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Abstract 
 

Mukhtar M. Ali has made many innovative and influential contributions in different areas 

of economics, finance, econometrics, and statistics. His contributions include developing 

econometric models to examine the determinants of the demand for casino gaming, 

investigating the approximate and exact distribution and moments of various econometric 

estimators and test statistics, and studying the statistical properties of time series based 

statistics under stationary and non-stationary processes (for example, see Ali and 

Thalheimer (1983, 2008), Ali                      , Ali and Sharma            , 
Tsui and Ali            , Ali and Giaccotto                    . Ali and Tiao 

      , and Ali and Silver            , among others). All of these have made 

significant impact on the profession and have been instrumental in advancing further 

research in statistics and econometrics. In this paper, we study the approximate first two 

moments of two weighted average estimators of the slope parameters in linear panel data 

models. The weighted average estimators shrink a generalized least squares estimator 

towards a restricted generalized least squares estimator, where the restrictions represent 

possible parameter specifications. The averaging weight is inversely proportional to a 

weighted quadratic loss function. The approximate bias and second moment matrix of the 

weighted average estimators using the large-sample approximations are provided. We 

give the conditions under which the weighted average estimators dominate the 

generalized least squares estimator on the basis of their mean squared errors. 

Key Words: Asymptotic approximations; fixed-effects; panel data; random-effects; 

Stein-like shrinkage estimator. 
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1. Introduction 
 

Estimation and forecasting under model uncertainty has been one of the 

fundamental issues in econometrics. In recent years, a large body of literature has 

been concerned with advancing a number of different approaches to overcome a 

variety of model uncertainty problems. The two most common approaches are 

model selection and model averaging. Model selection aims to find, among the set 

of models under consideration, the best approximate model for the unknown true 

data generating process. In this method, investigators typically first select the best 

performing model based on diagnostic tests (like Wald,    -ratios, R-squared, 

information criteria, etc.) and then carry out inference according to the selected 

model. This popular approach (also known as "pre-testing") is subject to many 

problems (Magnus (1999); Magnus and Durbin (1999); Danilov and Magnus 

              . The most important problem is that the model selection and 

estimation are completely separated such that the uncertainty of the initial model 

selection step is ignored throughout the parameter estimation and inference, see 

for example Magnus (2002) and Leeb and Pötscher            , among others, 

who show the initial model selection step may have non-negligible effects on the 

statistical properties of the resulting estimators. Taking the above problems into 

consideration, model averaging is introduced as an alternative to model selection. 

In model averaging, the uncertainty is addressed by averaging (weighted) over the 

set of candidate models. However, one of the challenges of this method is how to 

assign weights to different candidates to minimize a specific loss function. 

This paper investigates two weighted average estimation methods in linear panel 

data models to deal with uncertainty issues about the slope parameters. The 

weighted average estimators shrink a feasible generalized least-squares (FGLS) 

estimator towards a shrinkage direction, or equivalently a set of parameter 

restrictions. The restrictions are not necessarily believed to be true, but instead 

represent a belief about where the parameters of the model are likely to be close. 

Therefore, the proposed estimator is a weighted average of the FGLS estimator 

and a feasible restricted generalized least-squares estimator that belongs to the 

restricted parameter space. The shrinkage weight is inversely related to a weighted 

loss statistic that measures the weighted distance of the FGLS estimator and the 

restricted estimator. To evaluate our proposed estimators, we derive higher order 

approximations of the bias and mean squared error (MSE) of our proposed 
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estimator using Nagar (1959) large sample approximations. Furthermore, we show 

the dominance properties of our weighted average estimators in terms of risk, 

which ensures that our proposed estimators are robust against arbitrary deviations 

from the restrictions. 

The literature on weighted average estimation is substantial, which mainly was 

initiated by a seminal paper by Stein (1956). In that paper, Stein showed that the 

maximum likelihood estimator (MLE) for the mean of a multivariate normal 

distribution is inadmissible. This means that it is possible to construct an estimator 

with smaller risk than the MLE for the entire parameter space. James and Stein 

(1961) exhibited an estimator whose risk is uniformly smaller than that of the 

MLE. Paradoxically, the James-Stein estimator is itself inadmissible and can be 

dominated by another inadmissible estimate like its positive part (Baranchick 

(1964)). Judge and Bock (1978) and Ullah and Ullah (1978) developed this 

method for most of econometric estimators. Recently, Mehrabani and Ullah 

      , Hansen        and Maddala et al. (2001) use weighted average 

estimation methods to deal with model uncertainty between two candidate models 

in seemingly unrelated regressions, cross-sectional models, and heterogenous 

panel data, respectively. See also Lee et al. (2021) who utilize weighted average 

estimation in structural breaks. 

The paper is organized as follows. Sections 2 and 3 describe the model and the 

estimators. We give the analytical bias, mean squared error matrix and the risk of 

the weighted average estimators using the large-sample approximations in section 

4. Monte Carlo experiments are presented in Section 5 to study the finite sample 

performance of our proposed estimators. Section 6 contains some concluding 

remarks, and proofs are given in Appendix  . 

Notation: Throughout the paper, we adopt the following notation. For an     

real matrix   we write the transpose     When   is symmetric, we use         

and         to denote the largest and smallest eigenvalues, respectively.    and 

     denote the     identity matrix and     matrix of zeros. 

 

2. The Model and Assumptions 

Consider the following linear panel data model 

          
                                                                      (2.1) 
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where     is the dependent variable,     (             )
 
 is a     vector of 

exogenous regressors for unit  , and     is the unobserved error term, where   is 

the time dimension, and   is the cross-section dimension.   is a     vector of 

common unknown slope coefficients of interest, and    is the individual effect 

(fixed effect or random effect). 

Stacking the observations over  , we can express the model in (2.1) as 

                                                                                            (2.2) 

where               
  is a     vector of observations on the dependent 

variable,                
  is a     matrix of observations on the regressors, 

              
  is a     vector of disturbances for        , and    is a 

    vector of ones. In a matrix form, we can write the model as 

                                                                                                        (2.3) 

where      
      

         
      

         
      

               
 , 

and         is a matrix of     . 

We make the following assumptions. 

Assumption 1: The disturbances are normally distributed and for all     

     , 

(i)        . 

(ii)  (    
 )  ,

            

              
 

Assumption 2: The matrix of regressors  , which is of order      has full 

column rank and consists of non-stochastic elements. 

Assumption 3: The individual effects,   , follow one of the followings 

(a) Fixed Effects Model: they are constant terms. 

(b) Random Effects Model: they are normally distributed and for all          , 

and         , 

(i)        , 

(ii)           , 
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(iii)  (    
 )  ,

  
         

              
 

 

3. Estimators 

Our goal is to estimate the vector of slope parameters,  , in equation (2.1). We 

consider four estimators of the slope parameters:   ) an unrestricted generalized 

least squares estimator, ii) a restricted generalized least squares estimator that 

shrinks the unrestrictive estimator towards a restricted parameters space, iii) a 

Stein-like weighted average estimator which is a weighted averages of the 

restricted and the unrestricted estimators where the weights are proportional to a 

weighted quadratic loss function, and    ) a weighted average minimal mean 

squared error (MMSE) estimator which is a weighted average of the restricted and 

the unrestricted estimators where the weights are derived by minimizing the risk. 

We will examine the estimators for fixed effects and random effects models 

separately. 
 

3.1. Fixed Effects Models 

Since the individual effects,    's, are not our primary interest, we concentrate 

them out and obtain the following regression model from the model in (2.1) 

 ̃   ̃    ̃                                                                                         (3.1) 

where for example  ̃          ̃      ̃   
              

    
    

 , therefore 

 ̃               
       It is convenient to stack the   equations above in the 

following form 

 ̃   ̃    ̃                                                                                                        (3.2) 

where  ̃    ̃ 
     ̃ 

     ̃    ̃ 
     ̃ 

     ̃  ( ̃ 
     ̃ 

 )
 

, and for example 

 ̃     , and    (      )         
        which is an idempotent 

matrix. 

Unrestricted Estimator 

The typical estimator for the slope parameters in fixed effects models is a least 

squares estimator
1
 defined as 

                                                      
1
We note that under Assumption 1 since the errors are homoscedastic and uncorrelated, 

the least squares estimator is identical to the generalized least squares estimator. 
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 ̂  ( ̃  ̃)
  
 ̃  ‾    ( ̃  ̃)

  
 ̃   ̃                                                              (3.3) 

 

Restricted Estimator 

Because of a belief that the true parameter values may be close to a restricted 

parameter space    {   
        } where              , we want 

to shrink  ̂ towards the restriction space   . The purpose of the restrictions can be 

a model specification, a structural model, a set of exclusion restrictions, or any 

other restrictions that are often tested by means of hypothesis testing to improve 

the estimation efficiency. 

Hence, we can derive the restricted estimator from the following minimization 

        
 

  ̃   ̃     ̃   ̃     subject to     . 

The solution to the above minimization can be formulated as a restricted least 

squares estimator  

 ‾   ̂  ( ̃  ̃)
  
  * ( ̃  ̃)

  
  +

  

  ̂  (    ̃) ̂                                    (3.4) 

where  ̃  ( ̃  ̃)
  
  * ( ̃  ̃)

  
  +

  

 . 

Remark 1: A restricted parameter space,   , which is common in applied 

economics will take the form of an exclusion restriction. For example, if we 

partition 

  [
  
  
],                                                                                                            (3.5) 

where           , represents the slopes of the core regressors, and       , 

includes the slopes of included auxiliary regressors that are included in the model 

for robustness but may or may not be included in the model. Therefore, an 

exclusion restriction takes the form 

   [          ]                                                                            (3.6) 

where the restriction sets the last   slope parameters equal to zero. 
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Weighted Average Estimators 

We define the Stein-like weighted average estimator as  

 ̂  (  
 

 ̂
)  ̂  

 

 ̂
 ̃                                                                                         (3.7) 

and the weighted average MMSE estimator
2
  as below 

 ̂  (  
 ̂

 ̂
)  ̂  

 ̂

 ̂
  ̃                                                                                       (3.8)                                                                          

where  ̂ is a weighted quadratic loss function defined as 

 ̂    ̂   ̃   ( ̂   ̃)                                                                                     (3.9) 

and   is an arbitrary symmetric positive definite weight matrix with elements of 

order      ,  ̂     ( ̂  ̃( ̃  ̃)
  
 ) , where  ̂   ̃   ̃ ̃       

     ̃       ̃( ̃
  ̃)

  
 ̃ , and   is a positive characterizing parameter. We 

will defer describing the optimal choice of   in the next section. It is worth 

mentioning that, the weighted average estimators are similar and the only 

difference is in the characterizing parameters. The Stein-like weighted average 

estimator leaves the characterizing parameter user-specified that can be 

determined by minimizing a statistic. However, the weighted average MMSE has 

a specific form for the characterizing parameter that is determined by minimizing 

the risk. 

The idea behind the weighted average estimators defined above is that when the 

difference between the restricted and the unrestricted estimators is small   ̂  is 

small  , the weighted average estimators give higher weights to the restricted 

estimator, as it is the most efficient estimator. However, when the difference 

between the restricted and the unrestricted estimators is substantial, the bias of the 

restricted estimator, which is caused by imposing the parameter restrictions, can 

                                                      
2
Consider the class of estimators  ̂    ̂        ̃ , where   is a scalar. Then the risk 

associated with this estimator is 

     ( ̂ )   ( ̂   )
 
 ( ̂   )   

         ̂               ̃             ̂      ( ̃   )  
 
The value of   that minimizes the above risk, say    is 

   
   (   ̃( ̃  ̃)

  
 )

     ( ̂ )
  

which can be approximated by  ̂     ( ̂  ̃( ̃  ̃)
  
 )  ̂  
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be more than its variance efficiency gain, so the weighted average estimators 

assign higher weights to the unrestricted estimator. 
 

3.2. Random Effects Models 

In the random effects case, we can write the model in       as below 

         ,                                                                                                   (3.10)  

where the error term               
  consists of the time-invariant random 

effects,   , and the random component   . Under Assumption      , the variance-

covariance matrix of   is equal to  ‾         
       

  , where   

     
    

        
 , and       

          can be estimated by replacing 

  with  ̂   ̂   ̂ 
 , where 

 ̂  
  (      ( 

    )
  
    ) 

        
                                                                 (3.11) 

 ̂ 
  

  *      ( 
    )

  
    + 

   
,                                                                    (3.12) 

Hence,  ̂      ̂
     is an estimator of  . 

Unrestricted Estimator 

The typical estimator for the slope parameters in random effects models is a 

feasible generalized least squares (GLS) estimator defined as 

 ̂  (   ̂   )
  
   ̂      (   ̂   )

  
   ̂                                      (3.13) 

where  ̂ is the estimator of  . 

Restricted Estimator 

Because of a belief that the true parameter values may be close to a restricted 

parameter space    {   
        } where              , we want 

to shrink  ̂ towards the restriction space   . The purpose of the restrictions can be 

a model specification, a structural model, a set of exclusion restrictions, or any 

other restrictions that are often tested by means of hypothesis testing to improve 

the estimation efficiency. 
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Hence, we can derive the restricted estimator from the following minimization 

        
 

        ‾            subject to     . 

The solution to the above minimization can be formulated as a feasible restricted 

GLS estimator  

 ̃   ̂  (   ̂   )
  
  * (   ̂   )

  
  +

  

  ̂  (    ̂)  ̂                   (3.14) 

where  ̂  (   ̂   )
  
  * (   ̂   )

  
  +

  

 . 

Weighted Average Estimators 

We define the Stein-like weighted average estimator as below 

 ̂  (  
 

 ̂
)  ̂  

 

 ̂
 ̃,                                                                                     (3.15) 

and the weighted average MMSE estimator as below 

 ̂  (  
 ̂

 ̂
)  ̂  

 ̂

 ̂
 ̃                                                                                     (3.16) 

where  ̂ is a weighted quadratic loss function defined as 

 ̂    ̂   ̃   ( ̂   ̃)                                                                                   (3.17) 

and   is an arbitrary symmetric positive definite weight matrix with elements of 

order      ,  ̂     ( ̂  ̂(   ̂   )
  
 )  and   is a positive characterizing 

parameter. We will defer describing the optimal choice for   in the next section. 

 

4. Large-Sample Approximate Bias and MSE 

We employ the large-sample approximations method developed by Nagar (1959), 

to analyze the bias, mean squared error matrices (MSEM), and risks of the 

weighted average estimators for the fixed effects and the random effects models.  

4.1. Fixed Effects Models  

In the fixed effects case where the individual effects are constant terms, the 

unrestricted estimator is unbiased and we have  

       ̂     ̂                                                                                        (4.1) 
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       ̂     ̂      ̂        ( ̃  ̃)
  
                                                (4.2) 

       ̂     ̂      ( ̂   )      (( ̃  ̃)
  
 )                                   (4.3) 

Theorem 1: Under Assumptions 1, 2, and 3(a), the bias of the Stein-like weighted 

average estimator up to order           is 

    ( ̂ )   ( ̂   )   
 

 ̃
 ̃                                                                       (4.4) 

and the MSEM of the Stein-like weighted average estimator up to order 

          is 

     ( ̂ )    *( ̂   )( ̂   )
 
+         ̂  

  

 ̃ 
 ̃    ̃  

  

 ̃
   ̃( ̃  ̃)

  
 ̃ 

  
  

 ̃ 
  * ̃    ̃   ̃( ̃  ̃)

  
 ̃   ̃( ̃  ̃)

  
 ̃   ̃    ̃ +                         

 

and for the symmetric positive definite weight matrix   of order      , the risk 

of the weighted average estimator up to order           is 

    ( ̂ )   *( ̂   )
 
 ( ̂   )+      ( ̂)  

 

 ̃
*   *  ( ̃)   

 ̃ 

 ̃
++ (4.6) 

where  ̃         ̃( ̃  ̃)
  
 ̃       ̃     ̃   ̃       , and  ̃  

   ̃      ̃     ̃        . 

Proof: Appendix A.  

From Theorem 1, it follows that the Stein-like weighted average estimator 

dominates the unrestricted estimator in terms of having a smaller risk, when the 

second term on the right-hand side of equation (4.6) is negative, which holds 

when 

     *     ̃   
 ̃ 

 ̃
+                                                                                   (4.7) 

given the term in the square bracket is positive. Therefore, when   satisfies the 

condition (4.7), the risk of the Stein-like weighted average estimator is less than 

the risk of the unrestricted estimator up to the order of interest. In addition, as the 

choice of the characteristic parameter is user-specified, its optimal value,     , 
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that minimizes the risk of the Stein-like weighted average estimator up to order 

         , is 

           ̃   
 ̃ 

 ̃
 ,                                                                                          (4.8) 

since  ̃   ̃ depends on the unknown slope coefficients, one can replace it with its 

supremum value which is equal to       ̃ .
 3

 

Theorem 2: Under Assumptions 1, 2, and 3(a), the bias of the weighted average 

MMSE estimator up to order           is 

    ( ̂ )   ( ̂   )   
    ̃ 

 ̃
 ̃                                                                  

(4.9) 

and the MSEM of the estimator up to order           is 

     ( ̂ )    *( ̂   )( ̂   )
 
+         ̂  

      ̃   

 ̃ 
 ̃    ̃  

      ̃ 

 ̃
   ̃( ̃  ̃)

  
 ̃ 

  
      ̃ 

 ̃ 
  * ̃    ̃   ̃( ̃  ̃)

  
 ̃   ̃( ̃  )

  
 ̃   ̃    ̃ +  

(4.1

0) 

and for the symmetric positive definite weight matrix   of order      , the risk 

of the estimator up to order           is 

    ( ̂ )   *( ̂   )
 
 ( ̂   )+      ( ̂)  

    ̃ 

 ̃
*  ( ̃)   

 ̃ 

 ̃
+      

(4.11) 

Proof: Appendix A.  

                                                      
3
Consider the class of estimators  ̂    ̂        ̃ , where   is a scalar. Then the risk 

associated with this estimator is 

     ( ̂ )   ( ̂   )
 
 ( ̂   )   

         ̂               ̃             ̂        ̃     
 
The value of   that minimizes the above risk, say    is 

   
   (   ̃( ̃  ̃)

  
 )

     ( ̂ )
 

which can be approximated by  ̂     ( ̂  ̃( ̃  ̃)
  
 )  ̂  
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From Theorem 2, it follows that the weighted average MMSE estimator dominates 

the unrestricted estimator in terms of having a smaller risk, when the second term 

on the right-hand side of equation (4.11) is negative, which holds when 

     ̃   
 ̃ 

 ̃
  

Since the condition above depends on the slope parameters, it can be replaced 

with      ̃          ̃   

Furthermore, comparing the two weighted average estimators, it is clear that the 

dominance condition of the Stein-like weighted average estimator (     ̃  

       ̃ )  is weaker than the dominance condition for the weighted average 

MMSE estimator (     ̃         ̃  )  Moreover, the risk of the Stein-like 

weighted average estimator using the optimal     , is smaller than the risk of the 

weighted average MMSE estimator. 
 

4.2. Random Effects Models 

In case the individual effects are random, the large-   (fixed  ) approximate bias 

and MSEM of the unrestricted feasible GLS estimator up to order       , and 

       respectively, are derived in Ullah and Huang (2006), which are equal to 

       ̂     ̂                                                                                        

(4.12) 

       ̂     ̂      ̂                   
     

      
                    

       ̂     ̂      ( ̂   )                    
     

      
        

 

(4.14) 

where                      
                      . 

 

Theorem 3: Under Assumptions 1, 2, and 3(b), the bias of the Stein-like weighted 

average up to order        is 



 

 

 

 

 

 

 

 

Mehrabani and Ullah: Weighted Average Estimation in Panel Data  ...                     59 

 

 

     ( ̂ )   ( ̂   )   
 

 
                                                                      (4.15) 

and the MSEM of the average estimator up to order        is 

     ( ̂ )    *( ̂   )( ̂   )
 
+      ( ̂)  

  

  
       

  

 
                     

  
  

  
  {                                         }                 

 

and for the symmetric positive definite weight matrix   of order     , the risk 

of the Stein-like weighted average estimator up to order        is 

    ( ̂ )   *( ̂   )
 
 ( ̂   )+      ( ̂)  

 

 
*   *      

 

 
  ++         

(4.17) 

where      
 

               
 

   

Proof: Appendix A. 

From Theorem 3, it follows that the Stein-like weighted average estimator 

dominates the unrestricted estimator in terms of having a smaller risk, when the 

second term on the right-hand side of equation (4.17) is negative, which holds 

when 

     *       
 

 
  +                                                                                (4.18) 

given the term in the bracket is positive. Therefore, when   satisfies the condition 

(4.18), the risk of the Stein-like weighted average estimator is less than the risk of 

the unrestricted estimator up to the order of interest. In addition, as the choice of 

the characteristic parameter is user-specified, its optimal value,     , that 

minimizes the risk of the Stein-like weighted average estimator up to order 

      , is 

             
 

 
                                                                                            (4.19) 

Further, since      depends on the unknown slope coefficients, one can replace it 

with its supremum value which is equal to        . 

Theorem 4: Under Assumptions 1, 2, and 3(b), the bias of the weighted average 

MMSE estimator up to order        is 

     ( ̂ )   ( ̂   )   
      

 
                                                                (4.20) 

and the MSEM of the estimator up to order        is 
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     ( ̂ )    *( ̂   )( ̂   )
 
+        ̂  

       

  
       

       

 
               

  
       

  
  {                                         }                               

 

 and for the symmetric positive definite weight matrix W of order O(N), the risk of 

the estimator up to order        is 

    ( ̂ )   *( ̂   )
 
 ( ̂   )+      ( ̂)  

     

 
*      

 

 
  +     

(4.22) 

Proof: Appendix A. 

From Theorem 4, it follows that the weighted average MMSE estimator dominates 

the unrestricted estimator in terms of having a smaller risk, when the second term 

on the right-hand side of equation (4.22) is negative, which holds when 

       
  

 
   

Since the condition above depends on the slope parameters, it can be replaced 

with                 . 

Furthermore, comparing the two weighted average estimators, it is clear that the 

dominance condition of the Stein-like weighted average estimator         
          is weaker than the dominance condition for the weighted average 

MMSE estimator                    Moreover, the risk of the Stein-like 

weighted average estimator using the optimal     , is smaller than the risk of the 

weighted average MMSE estimator. 
 

5. Monte Carlo Simulation 

In this section, we investigate the finite sample mean squared error of the Stein-

like weighted average and the weighted average MMSE estimator via Monte 

Carlo experiments. 

We consider the following data-generating process 

           
         

where     is i.i.d.         and    is i.i.d.       . The regressors are generated for 

fixed effects as              , and for random effects case as        , and 

    (             )
 
       , where the diagonal elements of   are   

  and off-

diagonal elements are    
 , and we set   

     . The number of regressors is 
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    with two core regressors and four auxiliary regressors. The regression 

coefficients are determined by the rule 

   (
 

 
 
 

 
 
 

√  
(  

   

 
   

 

 
))

 

   

where   is the number of auxiliary regressors. The parameter   is selected to 

control the population   , and    varies on a grid between     and    . 

We consider four estimators for each fixed effects and random effects model: (1) 

the unrestricted estimator, (2) the restricted estimator where the restriction matrix 

follows the form of the restriction matrix in Remark 1 with         the Stein-

like weighted average estimator, (4) the weighted average MMSE estimator. Our 

parameters of interest are the slope parameters of the core regressors (the first two 

slope parameters). To evaluate the performance of our proposed estimators, we 

compute the risk based on the quadratic loss function. The risk (expected squared 

error) is calculated by averaging across 1000 random samples. We report the 

normalized risk by dividing the risk of each estimator by the risk of the 

unrestricted estimator in figures 1-5. The results show the normalized risk for 

             in three panels for different   and    It is clear that both proposed 

estimators perform better than the unrestricted estimator over the whole range of 

  , which supports the theoretical findings of the previous section. The Stein-like 

weighted average estimator and the weighted average MMSE estimator have 

similar performance for all values of  . However, the weighted average MMSE 

estimator performs slightly better for small values of    and the Stein-like 

weighted average estimator performs better for the rest. This is expected because 

for small values of    the bias of the restricted estimator is very small, so it has a 

smaller risk than the unrestricted estimator, and as the weighted average MMSE 

estimator assigns a larger weight to the restricted estimator, initially it performs 

better and as the risk of the restricted estimator increases, the risk of the weighted 

average MMSE estimator becomes slightly larger than the Stein-like weighted 

average estimator. Furthermore, these figures show that the ranking of the 

estimators is quite similar across different sample sizes     and different number 

of cross-sections    . 
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Figure 1: Relative MSE of Unrestricted, Restricted, Averaging, and Combined MMSE 

Estimators, for Fixed Effects model with T = 100; N = 100; k = 6; q = 4 

 

   

                          

Figure 2: Relative MSE of Unrestricted, Restricted, Averaging, and Combined MMSE 

Estimators, for Fixed Effects model with T = 100; N = 50; k = 6; q = 4 

 

   

                          

Figure 3: Relative MSE of Unrestricted, Restricted, Averaging, and Combined MMSE 

Estimators, for Fixed Effects model with T = 50; N = 100; k = 6; q = 4 
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Figure 4: Relative MSE of Unrestricted, Restricted, Averaging, and Combined MMSE 

Estimators, for Random Effects model with T = 20; N = 100; k = 6; q = 4 

 

   

                          

Figure 5: Relative MSE of Unrestricted, Restricted, Averaging, and Combined MMSE 

Estimators, for Random Effects model with T = 20; N = 200; k = 6; q = 4 
 

6. Conclusions 

In this paper, we introduce two weighted average estimators for estimating the 

slope parameters in linear panel data models. The introduced estimators are 

weighed averages of an unrestricted generalized least squares estimator, and a 

restricted generalized least squares estimator. The weights are inversely related to 

a weighted quadratic loss function which measures the weighted distance between 

the unrestricted and the restricted estimators. The analytical bias, MSE matrix, and 

risk of the weighted average estimators using large-sample approximations of 
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Nagar (1959) are derived. The superiority conditions of the weighted average 

estimators in terms of the risk are given for any user-specific symmetric positive 

definite weight matrix. 
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A. Appendix A 
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Proof: 

Using the standard geometric expansion for the inverse of a matrix
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, for large  , we have 

the followings 
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which gives the results in equation (A.1). Now, by using equation (A.1), we have 
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Proof of Theorem 1: 

 

From equation (3.3), we have 
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where        
  ̃   ̃        (    

   )  ̃     ̃   ̃       , and the last 

equality above holds by using the standard geometric expansion. The terms with order 

       
    and smaller are dropped, because they will not enter in the calculation of the 

bias and MSEM of the average estimator up to the orders of interest. 

Employing equations (A.6) in equation (3.7), we obtain 
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The bias of the average estimator using the approximations in equation (A.7) up to order 

          is 
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The MSEM up to order           is 
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and we give their expectations below 
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and the last equality above holds by using 
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By employing the results of equations (A.11), (A.12) and (A.14), in equation (A.10), we 

obtain the MSEM of the average estimator up to order          , as below 
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and       is defined in (A.5). 

The bias of the weighted average MMSE estimator using equation (A.22) up to order 
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where the last equality above holds by using equations (A.29) and (A.30) below 
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because of the normality of the errors. 

By employing the results of equations (A.25),(A.26) and (A.28), in equation (A.24), we 

obtain the MSEM of the estimator up to order          , as below 
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where the use has been made of equation (A.19). Further, the risk of the estimator up to 

order          , can be written as 
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for a proof see Ullah and Huang (2006). Hence, we have 

   ̂      ( ̂
      )   

 

√  
      ( 

 
 

 )                                       (A.36) 

where the last equality holds by expansion of the inverse of  ̂  . 

Using the results of Lemma A.1, in equation (3.13), we have 

 ̂    (   ̂   )
  
   ̂     

 
 

 

        
 

     
                                (A.37) 

where            , and       are defined below, and the suffixes show the order of 

magnitude in probability, 

        
                 ( 

    ) 

       
                     

    

        
                     ( 

    ) 

 

and                          . 
Using equation (A.37) in equation (3.17), we have 

 

 ̂
 [  ̂   ̃     ̂   ̃ ]

  
 [ ̂  ̂   ̂ ̂]

  

  *(            
   )

 

[            
   ]

 
 [            

   ] (            
   )+

  

  [                 
                ]

  

  
 

 
[  

 

 
            

 

 
                

   ]
  

  
 

 
[  

 

 
            

 

 
           ]      

   

 



 

 

 

 

 

 

 

 

 74                                      International Journal of Statistical Sciences, Vol. 22(1), 2022 

 

 

        
 

 ⏟
    

   

 
 

  
  
 ⏟  

  ( 
   ⁄ )

     
                                                                                                            

where       [ 
            

          ]    ( 
   )               , 

and the last equality above holds by using the standard geometric expansion. Also, the use 
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    and smaller are 

dropped, because they will not enter in the calculation of the bias and MSEM of the 

average estimator up to the orders of interest. 
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The bias of the average estimator using the approximations in equation (A.39) up to order 
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By employing the results of equations (A.44), (A.45) and (A.47), in equation (A.43), we 

obtain the MSEM of the average estimator up to order       , as below 
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Proof of Theorem 4: 

Using the results of Lemma A.1, we have 
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And       is given in equation (A.37). 

The bias of the weighted MMSE estimator using equation (A.55) up to order        is 
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where the last equality holds by (A.41). Also, we have  
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where the last equality above holds by using equations (A.62) and (A.63) below 
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where the last equality holds by using (A.50), and 
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and 
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By employing the results of equations (A.58), (A.59) and (A.61), in equation (A.57), we 

obtain   A. 61 , in equation (A.57), we obtain the MSEM of the estimator up to order 

      , as below 

     ( ̂ )          ̂  
  

  
        

 

 
               

  
  

  
  [                                         ] 

        

where the use has been made of equation (A.52). Further, the risk of the estimator up to 

order       , can be written as 
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