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Abstract 

Computer-generated random variates from different densities have been used in various 

simulation applications as stochastic inputs. The quantile transform method is one of the 

most common and efficient variates generation techniques, which requires the inverse of 

the cumulative distribution function (cdf) of a desired density. However, the application 

of the quantile transform method is limited to variates for which the cdf or inverse of the 

cdf is in simple closed form. This paper discusses the applicability of quantile transform 

method to generate variates for non-closed form of the cdf or inverse of the cdf and 

numerically solves the non-closed form of the cdf or inverse of the cdf. The application of 

the quantile transform method is then investigated through a simulation study where 

normal, gamma and non-central    densities are considered. From the simulation study, it 

is observed that generating variates from such densities via quantile transform method is 

not precluded because of the non-closed form of the cdf or inverse of the cdf. After 

comparing the quality of the sample produced and the computational cost of this study 

with other standard methods used to generate variates, it is concluded that the quantile 

transform method is equally efficient as other standard methods 

Keywords: Quantile transform method, non-closed form of the cdf, direct method of 

data generation. 
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1. Introduction 

Conducting an empirical study of a random variable        requires sample 

generation from its probability density function (pdf)     . Many methods are 

available in the literature to generate sample from     . Most importantly, 

quantile transform (direct), rejection sampling (indirect), Gaussian mixture and 

Markov Chain Monte Carlo methods are commonly used to generate sample from 

    . However, the choice of data generation technique for a particular pdf      

is contextual, i.e. the choice of data generation technique for a particular pdf      

depends on: (i) whether its distribution function      is in simple closed form or 

not (ii) computing time and implementation simplicity of the chosen algorithm 

(iii) the dimension of the desired density. When the cdf of the desired density has 

a closed form, the quantile transform method is usually used with high efficiency. 

Having a non-closed form of the cdf renders us to use other alternative methods 

such as rejection sampling and Gaussian mixture. Apart from the Markov Chain 

Monte Carlo method, all the methods mentioned here are used for one 

dimensional probability densities. Generalizing these methods for high 

dimensional probability densities is quite challenging. The Markov Chain Monte 

Carlo method is commonly used for simulating from the high dimensional 

probability densities. However, we are interested in generating only from the one 

dimensional probability densities, and this is why the Markov Chain Monte Carlo 

method is not covered in this paper. 

In an article, Tadikamalla et al. (1981) stated that the quantile transform method 

becomes inefficient due to numerical solution of non-closed form of cdf. 

Furthermore, Casella et al. (2002) asserted that, in practice, quantile transform 

method could be prohibitively long and complicated due to non-closed form of cdf 

and they recommended to explore other methods in such situation. 

Ghitany et al. (2008) also asserted that the quantile transform method fails to 

generate variates from Lindley density as the inverse transform of Lindley cdf has 

non-closed form. Horger et al. (2018) argued that solving non-closed form of cdf 

or non-closed form of inverse transform of cdf numerically requires high 

computational effort and the quality of the sample decreases.  

Unfortunately, we have not found any rigorous numerical study in the literature in 

favor of assertions made by Tadikamalla et al. (1981), Casella et al. (2002), 

Ghitany et al. (2008)}, and Horger et al. (2018). 
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On the contrary, Okwuokenye et al. (2016) showed in their study that generating 

Lindley variates by numerically solving the inverse transform of its non-closed 

form of cdf is not precluded. Furthermore, they generalized their findings to any 

probability density functions whose cdf have non-closed form i.e. solving non-

closed form of cdf numerically does not preclude variate generation from their 

pdfs under quantile transform method and it is equally efficient as other standard 

methods as far as the quality of the sample is concerned. 

To the best of our knowledge, there is no numerical study to date that justified the 

generalized assertion made by Okwuokenye et al. (2016). This paper demonstrates 

an extensive numerical study regarding the efficiency of the quantile transform 

method for generating variates from the densities with non-closed form of the cdf 

or inverse of the cdf by using the current state of the art computing facilities. 

We organize the rest of the paper as follows: Section 1.1 discusses the algorithm 

of quantile transform method while some important terminologies used in this 

paper are discussed in section 1.2. In section 2, we show how the quantile 

transform method generates variates from the normal, gamma, and non-central    

densities. Simulation results and discussions are presented in section 3 which are 

followed by conclusion and future work presented in section 4. 

1.1. Quantile Transform Method 

Let      be the pdf of a continuous random variable  . Then cdf of this random 

variable   can be defined as 

              ∫       
 

  
, 

where       is assumed as a strictly increasing or non-decreasing distribution function. 

The function   
      denotes the inverse of       which can be defined as 

            
      

The inverse function defined above,   
  

, is valid only when    is strictly 

increasing distribution function. The    which is not strictly increasing 

distribution function i.e. the distribution function is constant on some interval the 

above equation needs to be defined as follows Casella et al. (2002) 
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Theorem 1. Let       be the cdf of a continuous random variable   and define 

another random variable          Then   follows uniform       i.e.       

                 

The proof of theorem 1 is available in the textbook written by Casella et al. (2002). 

Theorem 1 can be used to generate random variate   from a population with cdf 

     . It works in a two steps procedures to generate random variate   from a 

population with cdf   : (i) draw                (ii) return   by solving the 

equation        . 

Example 1 (Generating Exponential Variate). Suppose we wish to generate 

random variate  from exponential density,                      using 

quantile transform method. For exponential density the form of the cdf       is 

       which is in simple closed form. Solving the equation          

yields    
 

 
          

      which is an explicit form. Quantile transform 

method which is commonly used to generate exponential variate as   
  

for 

exponential density has an explicit form. 

Example 2 (Generating Lindley Variate). To analyze failure time data Lindley 

density is used which was introduced by Lindley (1958). The Lindley distribution 

can be written as a mixture of exponential and gamma distributions which belongs 

to an exponential family. It represents a good alternative to the exponential failure 

time distributions that suffer from not exhibiting uni-modal and bathtub shaped 

failure rates. The probability density function of Lindley variate   (survival time) 

is defined as 

       
  

   
                 

where   is the scale parameter. The corresponding cdf for Lindley variate is 

         
      

   
    ,         

which is in simple closed form. However, the solution of the equation   
      

   
       yields non explicit form of   

   i.e.  can not be expressed 

explicitly in terms of   and  . The quantile transform method is not considered to 

simulate random variate in such cases (as   
  has no explicit form). The 
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composition method proposed by Ghitany et al. (2008) can be used to generate 

Lindley variate. 

Example 3 (Generating Normal Variate). The normal or Gaussian density is one 

of the most widely used probability density functions in Statistics. The probability 

density function of normal random variate   is defined as 

          
 

√    
 
 

 

   
      

         

where        and      are the population mean and variance 

respectively. The corresponding cdf for normal random variate is 

          
 

√    
∫  

 
 

   
      

 

  

    

which is not in simple closed form as it requires to evaluate intractable integral. 

As a consequence, the solution of the equation         yields non explicit form 

of   
   i.e.   can not be evaluated explicitly. As the cdf       for normal density 

involves intractable integral, hence   
  is also intractable. Therefore, instead of 

using the quantile transform method, another efficient method such as Box-Muller 

transformation is used to simulate normal random variate. The form of the cdfs for 

gamma and chi-square densities also have intractable integral (gamma first kind) 

like the cdf of normal density. Therefore, the quantile transform method cannot be 

considered to generate gamma and chi-square variates in the literature. 

In this paper, we mainly show how random variate   can be generated via the 

quantile transform method when       or   
   has no simple closed-form (may 

involve intractable integral) discussed in Examples 2-3. After generating sample 

from the distribution function      , we investigated the quality of the generated 

sample and required computational efforts to fill up the current lacks in the 

existing literature regarding this phenomenon. In the next subsection, some 

important terminologies are discussed that will be used throughout this paper. 

1.2.  Some Related Terminologies 

This section discusses some important terminologies such as average bias, average 

mean square error, coverage probability and Wald confidence interval which will 

be used to assess the quality of a generated sample. Suppose we have a probability 

density function        which is parameterized by unknown constant   and let  ̂ 
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be an estimator of   which is a function of observed sample. Then average mean 

square error, coverage probability and Wald confidence interval are defined as 

follows: 

Average Mean Square Error: Average mean square error (MSE) of an estimator 

 ̂ is defined as 

   ( ̂)  
 

 
∑( ̂    )

 
 

   

 

Usually, two or more estimators can be compared using their MSEs. The smaller 

the MSE value, the better the estimator. In this paper, MSE of an estimator will be 

calculated based on two samples of the same size generated through two different 

data generation techniques to evaluate the quality of the samples produced by 

them. 

Wald-Based Confidence Interval: 

The Wald based     confidence interval (CI) is intrinsically related to Wald test. 

To assess the quality of the samples, generated through two different data 

generation techniques, we use Wald based     confidence interval but in a 

slightly different way. From the Wald-based confidence interval the average width 

of the confidence interval and coverage probability are defined respectively as 

follows 

Average width  
 

 
∑ ( ̂    ̂  )

  
    and Coverage probability  

 

 
∑       
 
   , 

where  ̂   and  ̂   are the upper and lower limits of Wald based     confidence 

interval and        is an indicator function which takes value one when   is 

contained in the confidence interval otherwise it takes zero. Coverage probability 

calculated from            CI is expected to be       while average width 

of CI is expected to be as small as possible for a sample generated through an 

efficient method. 

Ljung-Box Test: Ljung-Box test, jointly developed by Ljung and Box (1978)}, is 

widely used to test the randomness of a time series in econometric and other 

applications of time series analysis. According to them, the algorithm of Ljung-

Box test is: (i)     the data are independently distributed against     the data 

possess some serial correlation up to a certain lag  , (ii) The quantity   
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      ∑ [         
 ] 

    which is a function of sample auto-correlation   at 

lag   and sample size  , denotes the test statistic, (iii)       
 under    and reject 

the null hypothesis if              
  where            

  is the       quantile of the 

   distribution with   degrees of freedom. 
 

2. Quantile Transform Method for Non-Explicit   
  

 

This section discusses how the quantile transform method generates sample from 

the distribution       whose   
   has no explicit form. The normal, gamma and 

non-central chi-square densities are considered here to illustrate how the quantile 

transform method works when   
  no explicit form has. 

2.1. Generating Normal Variate via Quantile Transform Method 

In the subsection 1.1, we have presented the form of cdf of normal density which 

has non closed form theoretical expression (intractable integral). Recall that the 

cdf of normal density 

          
 

√    
∫  

 
 

   
      

 

  

    

This cdf needs to be approximated as it involves intractable integral, and 

approximation can be made via three different approaches: (i) construction of 

approximation formulas (ii) using distribution functions which are close to normal 

distribution (iii) construction of bounds. There is no concrete study regarding the 

most efficient approach among these three approaches, and determining the most 

efficient approach is beyond the scope of this study. In this study, we consider a 

simplistic approximation formula proposed by Choudhury (2014) to approximate 

the cdf of normal density which is 

       
 

√  

   
 

                √    
       

The right hand side of equation 8 approximates the cdf of normal density for 

     and it has a minimum accuracy of three digits shown in their study. The 

inverse transform method requires to solve the following equation to generate 

standard normal variate 
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√  

   
 

                √    
         

where                    Equation 9 has no explicit solution for    The 

rootSolve package in R which finds the root of a non-linear equation using 

Newton-Raphson method was used to solve equation 9. Solution of equation 9 

only produces | | i.e. positive standard normal variate. However, using symmetry 

property of standard normal variate we can have   from | | by simply setting 

   | |  when      ootherwise    | |  where                  The 

transformation        is required to generate           from    
 

2.2.  Generating Gamma Variate via Inverse Transform Method 

Suppose the random variable               where     and     are the 

shape and rate parameters, respectively. Then the cdf of   is defined as  

          ∫
          

    

 

 

   
       

    
  

where         and      are the lower incomplete gamma and the gamma 

functions respectively. The cdf           defined in equation 10 has no explicit 

form as it involves lower incomplete gamma function, and hence quantile 

transform method was not considered to generate gamma variate in the literature. 

For the gamma family, quantile transform method can only be applied to generate 

exponential variate for which   
  has explicit closed form. There are several 

efficient methods available in the literature to generate gamma variate. However, 

the purpose of this paper is to investigate the performance of quantile transform 

method compared to other available methods used in the literature regarding 

gamma variate generation. For the shape parameter   , where  is an integer, 

Papoulis et al. (1965) suggested an approximation formula for equation 10 which is  

            ∑
   

  

   

   

          

Gamma density becomes Erlang density when   is an integer, and the cdf for 

Erlang density is also intractable due to the lower incomplete gamma function. 

However, like gamma variate there is a simple generation technique (variable 

transformation method) available in the literature on Erlang variate. To generate 
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gamma variate when   an integer (Erlang variate) is using quantile transform 

method the following equation needs to be solved for   

  ∑
   

  

   
                   , 

where               . Like equation 9, the above equation does not have an 

explicit solution for  . Therefore, numerical technique such as the Newton-

Raphson method is required to solve for  , and we use rootSolve package in R 

like earlier to solve it. To the best of our knowledge, there is no approximation 

formula for gamma cdf in the literature when   is not an integer. Therefore, this 

paper does not cover data generation from gamma density via quantile transform 

method when   is not an integer. 

2.3.  Non-central    Variate via Quantile Transform Method 

Let            be   independent normally distributed random variates with mean 

  and unit variances. Then the random variable   ∑   
  

    follows non-central 

   density with parameters   and   ∑   
  

   , which are the degrees of freedom 

and non-centrality parameter, respectively. Non-central    square density 

becomes central   density when      Recall that the cdf of non-central    

which is 

             ⁄ ∑
   ⁄   

  

 

   

                      

where           is the cdf of the central    density with k degrees of freedom 

which can be defined as 

          
               

         
        

where                 is the lower incomplete gamma function. There are a 

number of approximations available in the literature to approximate the cdf of 

non-central    denoted in equation 13. Abdel-Aty (1954) proposed a normal 

approximation to the non-central    distribution which is defined as 

          (        )  

where          and      are the distribution functions of non-central    and 

standard normal variates, respectively and 
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(

 

   
)
   

 (  
       

       
)

√
      

       

  

To approximate the          quantile of   amounts to 

solving  (        )    which yields  

    
               {  

       

       
       √

      

       
}

 

  

where        is the quantile function (inverse of the cdf) of standard normal 

density that can be determined by the equation 9. This approximation is also 

known as Abdel-Aty (1954) first approximation where   (
 

   
)
 

   
 

 
, is 

considered to be normally distributed with mean about to   
      

       
 

variance √
      

       
. Munuswamy (1959) had modified Abdel-Aty (1954) 

approximation formula by considering    (
 

   
)
 

 where   was not considered 

to be fixed to 
 

 
. The value of   was determined in such way that the third 

cummulant of   vanishes. The objective of this modification was to make the 

distribution of     more normal than that of  . Sankaran (1963) also proposed 

another variant of   which was defined as     (
   

   
)
   

. The value of   was 

determined such that the leading term in the expansion for one of the cumulants of 

    vanishes. From the findings of Munuswamy (1963) study, it was evident that 

there is no approximation which is the best for all situations (different 

combination of   and   values), and every approximation method has an accuracy 

issue. In other words, it is not certain that approximation which is the best at one 

percentage point will also be best at another percentage point. Furthermore, it was 

also stated that approximation proposed by Abdel-Aty (1954) is the easiest to 

apply (does not require to calculate cummulants) although generally it is less 

accurate than that of approximation proposed by Munuswamy (1963). For the 

sake of simplicity, we choose Abdel-Aty (1954) approximation formula to 

approximate the cdf of non-central    in this study. 
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3. Results and Discussion 

In this section, we evaluate the performance of the quantile transform method for 

generating random variates from the densities with non closed-form of cdf 

through simulation study. In addition to this, we also compare the performance of 

the quantile transform method with the method used as an alternative of it to 

generate random variates from such densities, respectively. More specifically, we 

compare quality of the samples generated by the quantile transform method and its 

alternative method, building block to form different R functions such as rnorm, 

rgamma, and rchisq to generate random variates from such densities. For 

notational convenience, we use the notation q_rnorm, q_rgamma and q_rchisq in 

this paper to represent the quantile transform method which is used to generate 

random variates from the densities with non-closed form of cdf or inverse of it. 

Table 1: Sample RMSE
*
 of estimates  ̂ and  ̂  based on 1000 simulated data sets. 

[    ] Method Sample size     

20 40 80 160 360 

[   ] q_rnorm 0.4000 0.2742 0.1927 0.1365 0.0948 

rnorm 0.3787 0.2813 0.1927 0.1373 0.0959 

*Root mean square error (RMSE) √
 

    
∑ *  ̂    

  ( ̂ 
    )

 
+    

   
 

Table 1 represents the average root mean square error (RMSE) of  ̂ and  ̂  both 

for q_rnorm  and rnorm  methods. The values of RMSE under both methods are 

very close to each other, and both of these decrease as the sample size increases. 

The estimates from the q_rnorm method and rnorm method are essentially the 

same when sample size is     . The estimated            

   coverage probability of  ̂ and  ̂ under both methods are presented in Table 

2. The average estimated coverage probability values of  ̂  and  ̂  under both 

methods are very close to target 95% value. Based on the simulation results 

presented in Tables 1 and 2, we can conclude that quality of the samples generated 

using q_rnorm method and rnorm are almost the same. 
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Table 2: Average coverage probability of   ̂ and  ̂  (%) based on 1000 simulated 

data sets. 

Parameter Method Sample size     

20 40 80 160 360 

    q_rnorm 95.1 94.7 94.9 94.8 94.8 

rnorm 94.7 94.9 94.3 95.0 95.0 

 q_rnorm 94.8 95.7 94.5 94.4 95.0 

rnorm 95.5 93.9 95.4 94.7 96.0 

Table 3 presents the average estimates of type 1 error  ̂ rates which is obtained by 

comparing the two empirical data sets generated using the q_rnorm method and 

rnorm methods, respectively. For all the sample sizes estimated  ̂ values are less 

than 0.05 which means two empirical data sets generated through q_rnorm method 

and rnorm methods are not different. As computing time is one of the core 

components to measure the efficiency of any method, CPU time to generate 

sample of different sizes for q_rnorm method and rnorm is computed using the 

system.time command in R which is presented in Table 4. From Table 4, we see 

that irrespective of all sample sizes q_rnorm method requires higher computing 

time compared to rnorm method. For example, to generate two hundred thousand 

observations q_rnorm requires 28.12 seconds while it is less than one second for 

rnorm method. However, required time in q_rnorm is not too big to think about it. 

Finally, to test the randomness of the generated samples produced by q_rnorm 

method we have used both the ACF (auto-correlation function) plot and the 

Ljung-Box test. The first two rows of Figure 1 show the ACF plots of generated 

samples produced by q_rnorm method for different sample sizes $n=20, 200, 

2000,$ and 20000. From the ACF plot produced for n=20, it is observed that lag at 

3 is beyond the 95% significance band. Similarly, for the ACF plots for n=200, 

2000 and 20000, lags at 12 and 20, lags at 20, 37, 87 and 95 and lags at 4, 30, 31, 

49, 54, 63 and 92 are beyond the 95% significance band, respectively. However, it 

does not confirm the presence of auto-correlation and it could happen because of 

sampling error. The Ljung-Box test is carried out to confirm the presence of auto-
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correlation, and the P values for all the tests are greater than 0.05 which means 

that the sample evidences fail to reject the null hypothesis (there is no auto-

correlation in the generated sample). The P values for Ljung-Box test is not shown 

here but are available in the R codes. All the results are reproducible as a specific 

seed number is used to generate the samples. 

Table 3: Estimated level of significance  ̂ for comparing empirical distribution 

functions based on 1000 simulated data sets. 

[    ]   Sample size     

20 40 80 160 360 

[0,1]  ̂ 2.4 2.4 3.0 3.9 3.8 

 ̂ values are reported as in percent (%) where represents the proportion of times the null 

hypothesis is rejected out of 1000 replicates. The null hypothesis is         , where    

and    be the empirical distribution functions of data simulated using the q_rnorm and the 

rnorm methods respectively. 

Table 4: Average computing time in seconds based on 20 simulated data sets. 

[    ] Method Sample size     

20 40 80 160 360 

[   ] q_rnorm 0.00163 0.01639 0.17767 3.8780 28.172 

rnorm 0.00001 0.00002 0.00013 0.003 0.0181 

The last two rows of Figure 1 show the overlying of standard normal distribution 

on the sample histograms. From these plots, it is clear that fitted line for the 

standard normal distribution appears to follow the histogram bars adequately for 

all sample sizes, and it is getting more accurate as the sample size increases. 

Tables 5-8 and Tables 9-12, placed in the supplementary materials in section 4.1, 

represent the estimated average RMSE, coverage probability, rate of level of 

significance and required computing time for q_rgamma versus rgamma and 

q_rchisq versus rchisq, respectively. Very similar patterns of estimated average 

RMSE, coverage probability, rate of level of significance and required computing 
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time observed in Tables 1-4 for q_rnorm versus rnorm can also be seen in Tables 

5-8 and Tables 9-12. However, estimated coverage. 

 

 

Figure 1: ACF and overlying the true pdf of standard normal distribution on 

sample histogram plots for different sample sizes. Samples are generated using the 

q_rnorm method. 
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probability both for q_rgamma and rgamma for n=20 does not reach to targeted 

95% coverage probability. 

Like the first two rows of Figure 1, the first two rows of both Figures 2 and 3 are 

also used to check the randomness of gamma and   variates generated through 

q_rgamma and q_rchisq, respectively. The Ljung-Box test confirms that both the 

gamma and    variates generated through q_rgamma and q_rchisq, respectively 

are free from auto-correlation although some of the lags at different orders for 

different sample sizes are beyond the 95% confidence band. 

4. Conclusion 

From the results of the simulation study, it is observed that the quality of the 

variates generated from the densities with non-closed from of cdf by numerically 

solving its cdf or inverse of its cdf via quantile transform method are equally good 

(statistical properties) as the variates produced by other standard methods used in 

the current literature. From the simulation study, we concluded that the existing 

assertions regarding the generation from the density with non-closed from of cdf 

via quantile transform method made by Tadikamalla et al. (1981), Casella et al. 

(2002), Ghitany et al. (2008), and Horger et al. (2018) are not supported by the 

results of the simulation study but the results of the simulation study supported the 

assertion made by Okwuokenye et al. (2016). However, generating variates from 

the densities with non-closed form of cdf via quantile transform method requires 

higher computing time compared to alternative methods although required time is 

insignificant. The success of the quantile transform method in the case of non-

closed from of cdf depends on the availability and difficulty level of the cdf 

approximation formulas. The cdf approximation formulas need to be chosen 

efficiently to get the quality samples from a desired density. 
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Supplementary Materials 

Table 5: Sample RMSE
*
 of estimates  ̂ and  ̂ based on 1000 simulated data sets. 

[   ] Method Sample size     

20 40 80 160 360 

[     ] q_rgamma 4.46 2.77 1.89 1.29 0.91 

rgamma 4.54 2.73 1.86 1.23 0.87 

[6, 4.5] q_rgamma 4.71 2.89 1.97 1.34 0.68 

rgamma 4.87 2.82 1.98 1.29 0.66 

[12, 2.5] q_rgamma 5.51 3.37 2.27 1.56 1.05 

rgamma 5.67 3.38 2.35 1.51 1.03 

[24, 1.5] q_rgamma 10.24 6.24 4.17 2.87 2.02 

rgamma 10.37 6.30 4.37 2.79 1.95 

 

Table 6: Average coverage probability of   ̂ and  ̂ (%) based on 1000 simulated 

data sets. 

Parameter Method Sample size     

20 40 80 160 360 

 

    

q_rgamma 91.9 93.1 94.3 94.9 95.7 

rgamma 92.6 93.7 94.1 95.0 94.4 

 

      

q_rgamma 92.0 93.9 95.0 94.7 95.3 

rgamma 92.8 93.4 94.2 95.2 95.3 

    q_rgamma 92.5 93.5 94.3 94.6 95.6 

rgamma 93.5 94.6 94.3 95.6 94.7 

 

      

q_rgamma 92.6 94 94.8 94.6 95.4 

rgamma 93.4 93.1 93.8 95.5 94.6 

     q_rgamma 92.3 94.1 94.9 95 95.7 

rgamma 93.5 94.7 93.8 95.5 94.2 

      q_rgamma 92.2 94.3 94.9 94.5 95.6 

rgamma 93.5 94.3 93.5 95.1 94.1 

     q_rgamma 92.9 94.2 94.7 94.9 95.8 

rgamma 93.8 94.1 94 94.9 94.3 

      q_rgamma 92.2 94.4 95.3 94.6 95.7 

rgamma 93.4 94.4 94.2 95 94.4 
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Table 7: Estimated level of significance   ̂  for comparing empirical distribution functions 

based on 1000 simulated data sets. 

[   ]   Sample size     

20 40 80 160 360 

[3, 8.5]  ̂ 2.3 3.1 2.7 4.6 3.6 

[6, 4.5]  ̂ 2.5 3.0 3.0 3.5 4.3 

[12, 2.5]  ̂ 2.8 3.0 3.2 3.6 3.7 

[24, 1.5]  ̂ 2.6 3.2 3.3 3.6 3.8 
 

 ̂  values are reported as in percent (%) where  ̂  represents the proportion of times the 

null hypothesis is rejected out of 1000 replicates. The null hypothesis           where 

   and    be the empirical distribution functions of data simulated using the   rgamma and 

the rgamma  methods respectively. 

 

Table 8: Average computing time in seconds based on 20 simulated data sets. 
 

[    ] Method Sample size     

20 200 2000 20000 200000 

[     ] q_gamma 0.003 0.02750 0.23350 1.78350 35.2805 

rgamma 0.00002 0.00003 0.00028 0.003 0.0040 
 

 

Table 9: Sample RMSE
*
 of estimates  ̂ and  ̂ based on 1000 simulated data sets. 

 

[   ] Method Sample size     

20 40 80 160 320 

[    ] q_rchisq 21.39 14.91 10.87 7.78 5.57 

rchisq 19.87 14.48 10.16 7.13 5.05 

[12, 10] q_rchisq 15.44 10.77 7.79 5.58 4.00 

rchisq 15.16 10.77 7.53 5.45 3.85 

[15, 5] q_rchisq 11.94 8.33 6.00 4.31 3.09 

rchisq 11.75 8.37 5.99 4.24 3.02 
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Table 10: Average coverage probability of   ̂ and  ̂ (%) based on 1000 simulated 

data sets. 
 

Parameter  

Method 
Sample size     

20 40 80 160 320 

    q_rchisq 96.1 95.6 95.3 95.1 94.8 

rchisq 95.5 95.2 95 95.3 95.5 

     q_rchisq 96.6 95.5 95.4 95.1 95.1 

rchisq 95.4 95.3 95.1 95.6 95.8 

     q_rchisq 96.2 95.5 95.1 95.3 95 

rchisq 96.6 95.4 95.2 95.1 95.4 

     q_rchisq 96.3 95.6 95.2 95.2 94.7 

rchisq 96.6 96 95.3 95.5 95.4 

     q_rchisq 95.9 95.3 94.9 95.6 95.1 

rchisq 96.1 95.9 95.5 95.1 94.9 

    q_rchisq 96.4 95.6 95.2 95.4 94.8 
rchisq 95.6 96.1 95.5 95.2 95.1 

 

Table 11: Estimated level of significance ( ) for comparing empirical distribution 

functions based on 1000 simulated data sets 
 

[    ]   Sample size     

20 40 80 160 320 

[3, 20]  ̂ 2.8 2.4 3.8 5.0 5.0 

[12,10]  ̂ 4.2 2.3 3.3 4.0 4.0 

[15,5]  ̂ 3.6 2.7 3.2 3.6 4.6 

 ̂ values are reported as in percent (%) where  ̂ represents the proportion of times the 

null hypothesis is rejected out of 1000 replicates. The null hypothesis           where 

   and    be the empirical distribution functions of data simulated using the   rchisq and 

the rchisq  methods respectively. 

 

Table 12: Average computing time in second based on 20 simulated data sets 
 

[    ] Method Sample size     

20 200 2000 20000 200000 

[    ] q_rchisq 0.00005 0.001 0.005 0.0430 0.3350 

rchisq 0.00001 0.001 0.0005 0.007 0.0595 
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Figure 2: ACF and overlying the true pdf of gamma distribution on sample 

histogram plots for different sample sizes. Samples are generated using the 

q_rgamma method. 
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Figure 3: ACF and overlying the true pdf of chi-square distribution on sample 

histogram plots for different sample sizes. Samples are generated using the 

q_rchisq method. 
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R Codes 

## Standard Normal Variate Generation by Quantile Transform 

Method (q_rnorm) 

## Generate one data set which contains n observations ## 

library(rootSolve) 

rinorm<-function(n) 

   { 

     u<-runif(n,.5) 

     a<-b<-numeric(n) 

     for (i in 1:n) 

       { 

        f<-function(x) 

         { 

 1-((1/sqrt(2*pi))*(exp(-

(x^2)/2)/(0.226+0.64*x+0.33*sqrt(x^2+3))))-u[i] 

         } 

        x<-uniroot.all(f,c(0,10)) 

        v=runif(1) 

        a[i]=ifelse(v<=.5,x,-x) 

       }  

     return(a) 

   } 

## Generate k number of data sets (X and Y) for both methods 

where each data set contains n observations ## 

k=1000; n=320 

## Use seed number to generate each sample from the same 

place (useful to reproduce results) 

seed=50 

X<-matrix(0,k,n) 

Y<-matrix(0,k,n) 

for (i in 1:k) 

  { 

    set.seed(seed+i) 

    X[i,]<-rinorm(n) 

    Y[i,]<-rnorm(n) 

  } 
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## Calculating Type 1 Error (whether two empirical 

distributions are the same) 

size_test<-function(X,Y) 

             {   

                r<-nrow(X) 

                count<-0 

                for (j in 1:r) 

                 { 

                   ks<-ks.test(X[j,],Y[j,]) 

                    ind<-ifelse(ks$p>=0.05,0,1) 

                    count<-count+ind 

                 } 

               return(count/r) 

             } 

size_test(X,Y) 

## Calculate average bias, MSE and coverage probability of mean 

and variance parameter 

statis<-function(X,Y) 

          { 

             r<-nrow(X) 

             col<-ncol(X) 

             n<-(col-1) 

         # mean and variance for sample generated by inverse 

         transform method 

              ime_x<-apply(X,1,mean) 

             iva_x<-apply(X,1,var) 

          # mean and variance for sample generated by available 

      method 

              me_y<-apply(Y,1,mean) 

              va_y<-apply(Y,1,var) 

                         # bias for mean (mb), variance (vb), mse for mean and 

            variance (mmse, vmse) under inverse method 

               imb<-ivb<-immse<-ivmse<-imcp<-ivcp<-numeric(r) 

               mb<-vb<-mmse<-vmse<-mcp<-vcp<-numeric(r) 

               sd_ime_x<-sd(ime_x) 

               sd_me_y<-sd(me_y) 
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             z=qnorm(.975)  

             chi_up<-qchisq(0.025,n) 

             chi_ll<-qchisq(0.975,n)             

             for (j in 1:r) 

                { 

                  # statistics under inverse method 

                    imb[j]<-ime_x[j]-0 

                   ivb[j]<-iva_x[j]-1 

                   immse[j]<-imb[j]^2 

                   ivmse[j]<-ivb[j]^2 

                  # do for icp as well for mean and variance 

                  # coverage probability for mean 

                     iul<-ime_x[j]+z*sd_ime_x 

                     ill<-ime_x[j]-z*sd_ime_x 

                     if (0>ill & 0<iul) imcp[j]<-1    

                  # coverage probability for variance for inverse 

                    transform method 

iv_ul<-(n*iva_x[j])/chi_up 

           iv_ll<-(n*iva_x[j])/chi_ll 

           if (1>iv_ll & 1<iv_ul) ivcp[j]<-1 

                  # statistics under available method   

                  mb[j]<-me_y[j]-0 

                   vb[j]<-va_y[j]-1 

                   mmse[j]<-mb[j]^2 

                   vmse[j]<-vb[j]^2 

                  # do for cp as well 

                  ul<-me_y[j]+z*sd_me_y 

                  ll<-me_y[j]-z*sd_me_y 

                  if (0>ll & 0<ul) mcp[j]<-1 

                 # Coverage probability for variance for available 

                   method  

                 v_ul<-(n*va_y[j])/chi_up 

                 v_ll<-(n*va_y[j])/chi_ll 

                  if (1>v_ll & 1<v_ul) vcp[j]<-1 

             } 
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list(iamb=mean(imb),iavb=mean(ivb),iammse=mean(immse),iavmse

=mean(ivmse),iamcp=mean(imcp),irmse=sqrt(mean(immse)+mean(iv

mse)),iavcp=mean(ivcp),amb=mean(mb),avb=mean(vb),ammse=mean(

mmse),avmse=mean(vmse),rmse=sqrt(mean(mmse)+mean(vmse)),amcp

=mean(mcp),avcp=mean(vcp)) 

      } 

## Return all the outputs 

statis(X,Y) 

## code for computing time to generate sample under q_rnorm and 

rnorm ## 

isimu<-function(n) 

        { 

          rinorm(n) 

        } 

simu<-function(n) 

        { 

          rnorm(n) 

        } 

n=20000 

system.time(isimu(n*1000))/1000 

system.time(simu(n*1000))/1000 

## Code for checking randomness visually ## 

library(TSA); par(mfrow = c(2, 2))  # Set up a 2 x 2 plotting 

space 

# Create the loop.vector (all the columns) 

loop.vector <- 1:4 

sample.size<-c(20,200,2000,20000) 

seed=5 

for (i in loop.vector)  

{ 

    # Loop over loop.vector 

     set.seed(seed+i) 

     x<-isimu(sample.size[i]) 

          # Plot acf of x 

     j=sample.size[i] 

     acf(x,lag=100,main=paste("n=", j)) 

  } 
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## Code for testing randomness through Ljung-Box Test ## 
 

n=20; set.seed(6) 

x1<-isimu(20) 

Box.test (x1, lag = 3, type = "Ljung") 
 

n=200; set.seed(7) 

x1<-isimu(200) 

Box.test (x1, lag = 12, type = "Ljung") 

Box.test (x1, lag = 20, type = "Ljung") 
 

n=2000; set.seed(8) 

x1<-isimu(2000) 

Box.test (x1, lag = 20, type = "Ljung") 

Box.test (x1, lag = 37, type = "Ljung") 

Box.test (x1, lag = 87, type = "Ljung") 

Box.test (x1, lag = 95, type = "Ljung") 
 

n=20000; set.seed(9) 

x1<-isimu(20000) 

Box.test (x1, lag = 4, type = "Ljung") 

Box.test (x1, lag = 30, type = "Ljung") 

Box.test (x1, lag = 31, type = "Ljung") 

Box.test (x1, lag = 49, type = "Ljung") 

Box.test (x1, lag = 54, type = "Ljung") 

Box.test (x1, lag = 63, type = "Ljung") 

Box.test (x1, lag = 92, type = "Ljung") 
 

## Overlaying the true pdf on sample histogram ## 

par(mfrow = c(2, 2))  # Set up a 2 x 2 plotting space 

set.seed(12) 

x1<-isimu(20) 

Box.test (x1, lag = 100, type = "Ljung") 

hist(x1,freq=F,breaks=4,main=paste("n=", 20),xlab="x values") 

xx<-seq(-3,3,0.01) 

lines(xx,dnorm(xx),type="l") 
 

set.seed(7); x2<-isimu(200) 

Box.test (x2, lag = 100, type = "Ljung") 

hist(x2,breaks=15,freq=F,main=paste("n=", 200),xlab="x values") 

xx<-seq(-3,3,0.01) 

lines(xx,dnorm(xx),type="l") 
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set.seed(8); x3<-isimu(2000) 

Box.test (x3, lag = 100, type = "Ljung") 

hist(x3,breaks=15,freq=F,main=paste("n=", 2000),xlab="x values") 

xx<-seq(-3,3,0.01) 

lines(xx,dnorm(xx),type="l") 

 

set.seed(9); x4<-isimu(20000) 

Box.test (x4, lag = 100, type = "Ljung") 

hist(x4,breaks=15,freq=F,main=paste("n=", 20000),xlab="x values") 

xx<-seq(-3,3,0.01) 

lines(xx,dnorm(xx),type="l") 

#######################################################################  

## Code for generating sample from Gamma density using quantile 

transform method 

library(rootSolve)## R code for shape parameter 3 ## 

g3=function(n,b) 

    { 

    v=c(); u=runif(n) 

    for(i in 1:n) 

         { 

            gc=function(x) 

          { 

       1-exp(-x*b)*((1+(b*x/1)+((b*x)^2)/2))-u[i] 

          }  

      v[i]=uniroot.all(gc,c(0,1000)) 

       } 

     return(v) 

   } 

## For other shape parameter values code will be very similar to 

previous one ## 

## Code for producing Summary statistics and graphs are very 

similar to r_norm ## 

## Original codes will be given to reader whenever authors are 

requested ##  

 

## Chi square variate generation by quantile Transform Method 

(q_rchisq) ## 

## Generate one data set which contains n observations ## 
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library(rootSolve) 

ichisq<-function(n,k,l=0) 

        { 

          x = c() 

          u = runif(n) 

          for (i in 1:n) 

            { 

x[i]<-(k+l)*(1-

(2*(k+2*l))/(9*(k+l)^2)+qnorm(u[i])*sqrt((2*(k+2

*l))/(9*(k+l)^2)))^3 

            } 

           return(x) 

         } 

## For other parameter values code will be very similar to 

previous one ## 

## Code for producing summary statistics and graphs are very 

similar to r_norm ## 

## Original codes will be given to reader whenever authors are 

requested ##  

 

 


