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Abstract

The computation of confidence intervals for the intra-class correlation coefficient (ICC) is
addressed under a nonlinear dose-response model that includes a single random effect.
Likelihood based higher order asymptotic procedures are employed for the interval
estimation of the ICC, and are noted to perform well in terms of maintaining the coverage
probability. The results are applied to a case study taken from the literature dealing with a
meta-analysis of the individual participant data used to investigate the association
between various dose levels of antipsychotic medications and the corresponding
responses. The ICC is used in the case study in order to assess the possible heterogeneity
across the different studies.
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starting from scratch. Some of my best collaborative research was carried out
under his inspiration. While his outstanding research accomplishments are well-
known, what | have found very touching is the way he has passionately looked out


mailto:mathew@umbc.edu

168 International Journal of Statistical Sciences, Vol. 21(2), 2021

for junior colleagues and students. If |1 was deserving of an academic opportunity
or recognition, he took it up and pursued it even before I thought about it. Suffice
to say words fail if I try to express my gratitude. Professor Bikas Sinha’s frequent
visits to our campus granted me the privilege to collaborate with him on a few
research projects. | have always found his energy and excitement infectious. Thus
it is a great privilege and honor to be contributing to this special issue of the
International Journal of Statistical Sciences.

1. Introduction and Background

The intraclass correlation, or the intraclass correlation coefficient (ICC), is the
correlation between a pair of repeated measurements on the same subject. It is also
the proportion of the total variance that is not explained by the within-subject
errors. The ICC is often used as a measure of the reliability of a measurement
method, or an experimental method. The article by Liljequist, Elfving and
Roaldsen (2019) provides a detailed discussion of the ICC. In the context of linear
mixed and random effects models, inference concerning the ICC has been well-
investigated in the literature; we refer to the work by Demetrashvili, Wit and Van
den Heuvel (2016), and the recent article by Feng, Mathew and Adragni (2021)
where accurate confidence intervals are developed for the ICC under linear mixed
and random effects models.

The present work takes up the interval estimation of the ICC in a specific non-
linear mixed effects model considered by Demetrashvili and Van den Heuvel
(2015). The model was used in a meta-analysis application investigating the dose-
response relationship between different doses of several antipsychotic drugs and
the dopamine D, receptor occupancy. For eight antipsychotic medications, the
meta-analysis was carried out by Lako et al. (2013). In order to briefly describe
the scenario, let m denote the number of studies in the meta-analysis, with n;
patients in the ith study, and suppose O;; denotes the dopamine D, receptor
occupancy on the jth patient in the ith study. In their work, Lako et al. (2013)
modeled the quantity y;; = In(1 — 0;;) as a non-linear mixed effects model where
the mean is a non-linear function of the administered dose; however, an additive
random effect was included in the model in order to account for possible between
study heterogeneity. If x denotes the administered dose, the non-linear function
that was used to model the mean, say u(x, ) was the following form of the
Michaelis-Menten curve:
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B+ (1— ﬁ1)x)
ﬁz +x ’

where B = (B4, ;) is an unknown parameter vector. The parameter 8, has the
range (0, 1]; it represents the maximum response of the drug in the population. In
the literature, the notation E ., is also used instead of ;. The parameter £, is
assumed to be greater than 0, and it represents the dose associated with a 50% of
response value, it is also denoted as EC .

u(ep) =n

Suppose there are m studies, and let x;; denote the jth dose level used in the ith
study, with y;; denoting the corresponding response; j =1, 2, ..., n;, i =1, 2, ...,
m . An additive random effect 7; is assumed for the unexplained among-study
variation, and an error term ¢;; will take care of the within-study variability. Thus
the assumed nonlinear mixed effects model is given by

yij = u(xij; B) + 1 + €, (1.1)
where 7; and ¢;; are a independent random variables having the distributions
7; ~ N(0,02) and €;; ~ N (0, 02). Here we want to point out that even though the

parameters ; and 3, enter non-linearly in the model, the random effect z; is an
additive term.

Based on the proposed nonlinear mixed effect model, the ICC is defined as the
correlation coefficient on repeated measurements on the same patient in the same
study, i.e., ICC = corr(Y;;,Y;;,), j # j'. Under the assumptions on the random
variables 7; and €;; appearing in the model (1.1), we see that the ICC, to be
denoted by p, has the expression

ot

p= (1.2)

o2+0%
where ¢ and ¢2 are the variances of 7; and ¢; j» respectively. From the expression

in (1.2), we see that we can interpret the ICC as the proportion of variation
unrelated to individuals in the total variation.

It is the above set up that is considered in Lako et al. (2013), and taken up by
Demetrashvili and Van den Heuvel (2015). The latter authors investigated the
extent to which the between-study variability could be dominating, assessed using
the ICC. In their work, Demetrashvili and Van den Heuvel (2015) have derived
confidence limits for the ICC by the delta method, percentile bootstrap and an
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approach referred to as the beta-approach, and have compared them based on
estimated coverage probabilities. The authors conclude that in terms of
maintaining the coverage probability, the beta-approach is to be preferred over the
solutions obtained using the delta method and the percentile bootstrap.

In the present work, we shall investigate the interval estimation of the ICC by
applying some likelihood based higher order asymptotic procedures due to
DiCiccio, Martin and Stern (2001). We shall also compare our solution with that
obtained using the beta-approach in terms of coverage probabilities and expected
widths of the confidence intervals. The results will be illustrated using the
example considered in Demetrashvili and van den Heuvel (2015).

2. Confidence intervals for the ICC

We shall now discuss different methods for the interval estimation of the ICC
parameter under the model (1.1). We shall propose and compare them based on
their estimated coverage probabilities and expected widths.

Lety; = (Vi1,..-»Yin,)" b€ the n; X 1 response vector from the ith study, and let
pi(xi; B) = Wi = (u(xins B), u(xiz; B), ..., u(xin;; )" be  the corresponding
n; X 1 mean vector, where x; = (x;1,Xz,....,Xin,)". Note that x; is the vector
consisting of the dose levels used in the ith study. Under the model (1.1), we have
the multivariate normal distribution

Vi ~ N{pi(x;; ), %;], where %; =021y + 02, (2.1)

Jn; eing an n; X n; matrix of ones. Let & be the 4 X 1 vector of unknown
parameters:
0 = (By, B2, 07,02)". (2.2)
As a function of the parameter vector 6, the log-likelihood function, say [(8), is
given by
N 1 1 o —
1(0) = —3In@m) =227, In|%;| =532, [ — ) 7 0 — 1)), (23)

where we use the notations p; = p;(x;; B), & = 021y + 0¢)n,, 1= 1, 2, ... m,
and N = Y, n;. The maximum likelihood estimators of the parameters can be
numerically obtained by maximizing the log-likelihood function (2.3); clearly,
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closed-form solutions can’t be found. A quasi-Newton optimization algorithm can
be used to obtain the MLEs.

With the parameters as defined in (2.2), let 8 denote the MLE of 6, and ép denote
the constrained MLE of 6 for a fixed value of the ICC p. The signed log-
likelihood root r(p) is given below, and its asymptotic normality, can be used for
large sample inference concerning p:

r(p) = sign (p — p)[2{¢(8) — £(§,)}]"/, (2.4)

where sign(x) is +1 if x > 0 and —1 if x < 0. Confidence limits for p can be
obtained by equating r(p) to standard normal percentiles, and solving for p. For
example, a 100(1 — a)% upper confidence limit for p is the solution of p to the
equation r(p) = —z,, Where z, is the 100(1 — a)th percentile of the standard
normal distribution. Once the data are available, the required solution can be
numerically obtained.

2.1. Two Higher Order Procedures

Higher order asymptotics consist of modifying the signed log-likelihood ratio test
statistic r(p) so that accurate small sample performance can be achieved. Here we
shall not provide any technical details, and the necessary regularity conditions. In
fact the necessary technical conditions are not entirely clear, since we are not in an
iid set up. Nevertheless, we shall apply the higher order modifications, and then
verify their accuracy based on simulations. The higher order modifications of
r(p) that we are proposing are based on the methodology developed in DiCiccio,
Martin and Stern (2001). We shall refer to these as Modification 1 (M1) and
Modification 2 (M2).

2.1.1. Modification 1

In order to present the first modification, let the mean and variance of r(p) be
denoted by E(r(p)) = m(6) and Var(r(p)) = 1 + v(8), where we recall that 6
is the parameter vector defined in (2.2). The modified quantity, to be denoted by
r1.(p), is a standardization of r(p) using the mean m(ép) and variance 1 + v(ép),

where §p is the MLE of 6 for a fixed value of p. Thus

_ r(p)-m(@,)
rl(p) - {1+v(§p)}1/2' (25)
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We note that the only unknown parameter involved in r;(p) is the ICC p. A
normal approximation for the distribution of r;(p) is known to be significantly
more accurate compared to that for r(p). Thus confidence limits for p obtained
using r; (p) as a pivot is expected to be more accurate in terms of maintaining the
coverage probability.

It should however be noted that analytic expressions for m(6) and v(0) are not
available, and the computation of m(ép) and 1 + v(ép) IS an issue that needs to
be addressed. As suggested in DiCiccio, Martin and Stern (2001), these quantities
can be numerically obtained by proceeding as follows. For a fixed value of p,
generate observation vectors, say y;, i = 1, 2, ..., m, under the model (2.1) with
the parameter 6 replaced by ép. Compute the value of r(p) given in (2.4), using
y; in the place of y;, i = 1, 2, ..., m; let r*(p) denote the value of r(p) so
obtained. For the same fixed value of p, repeat this several times, say M times,
resulting in M values of r*(p), say 7;°(p), j = 1, 2, ...., M. The mean and variance
of these M values give estimates of m(ép) and 1+ v(ép), respectively. Once
m(6,) and 1 + v(8,) are thus obtained, the statistic 7, (p) given in (2.5) can be
evaluated at the fixed value of p. Equating r; (p) to appropriate standard normal
percentiles, confidence limits for p can be obtained. In order to implement such a
methodology, it is necessary to repeat the procedure just outlined for a grid of
values of p, until a value of p is found so that r;(p) is equal to the appropriate
percentile of the standard normal distribution. We note that a 100(1 — a)% upper
confidence limit for p is obtained as the solution to r; (p) = —z,, where z, is the
100(1 — a)th percentile of the standard normal distribution. Similarly, two-sided
confidence limits are obtained by solving r;(p) = z4,, and r;(p) = —z4,. The
algorithm given below gives the steps necessary to compute the confidence limits
for p using the procedure just outlined; the algorithm is presented for the
computation of a 100(1 — a)% upper confidence limit for p.

Algorithm 1: Steps for computing a 100(1 — a)% upper confidence limit for p
using the normal approximation for the statistic r; (p) given in (2.5)

1. Compute the MLE 8 of the parameter vector 6 by maximizing the log-
likelihood function [(6) in (2.3).

2. Fix a value for p, say g, and maximize [(8) subject to the constraint that p =
p. Let the corresponding estimate of 8 be denoted as éﬁ.
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3. Compute r(p) using the expression given in (2.4).

4. Generate an observation vector y; under the model (2.1) with the parameters
replaced by 85, i = 1, 2, ..., m. Compute the value of r(p) in (2.4) using y; in the
place of y;, i =1, 2, ..., m. Let r*(p) denote the value of r(p) so obtained.

5. Repeat the above step several times, say M times, resulting in M values of
r*(P), say r;"(p),j = 1, 2, ..., M. Compute the mean and variance of these M

values, to be denoted by m(85) and 1 + v(85), respectively.

6. Using the values of m(ép«) and 1 + ”(éﬁ) so obtained, compute the statistic
r(p) in (2.5).
7. Ifry(p) = —2z,, then pis the 100(1 — a)% upper confidence limit for p. If

r(P) # —z,, adjust the value of g in Step 2, and repeat steps 2-6, until a value is
found for which r;(py) = —z,.

2.1.2. Modification 2

A second higher order procedure given in DiCiccio, Martin and Stern (2001)
starts with a hypothesis testing scenario:

Ho:p = po, Ha:p > po,
for a specified p,. The proposed method consists of computing the p-value as

P'épo (T(p) < robs)r

where r(p,) is defined in (2.4), and r,;,, denotes its observed value. Note that the
p-value given above is not computed using an asymptotic normal distribution of
r(p); rather, it is computed by Monte carlo simulation when the parameter 6 takes
the value épo. In order to compute confidence limits for p, we proceed as follows.
Generate M parametric bootstrap samples when p takes the value p, and the
parameter 6 takes the value épo. Now compute M values of r(po), say 17" (po), j =
1, 2, ..., M, based on the M generated samples, and compute the proportion of the
77" (po) values that are less than 7. If the value p, is such that this proportion is
equal to (1 — a), then such a value p, is a 100(1 — @)% upper confidence limit
for p. For obtaining a lower confidence limit for p, we want p, such that the
proportion of the 17" (p,) values that are less than 7, is equal to .
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2.2. Other Methods
2.2.1. Beta-approach (Demetrashvili and Van den Heuvel (2015))

The beta-approach proposed in Demetrashvili and Van den Heuvel (2015),
consists of approximating the distribution of the MLE p of p by a beta
distribution: p ~ Beta(a, b), where a > 0 and b > 0. Let 65 be the estimated
variance of p (see below). Equating the mean and variance of Beta(a, b) to p and
65, respectively, we can solve for a and b. The solutions will be denoted by @ and

b, respectively, and are given by

A first-order Taylor expansion is used in Demetrashvili and Van den Heuvel
(2015) in order to estimate the variance of g, and the estimated variance is given

by

62__8;‘ Az —6# ’\2——26‘?6EZ Az 2
P (@F+ed)* Ot (BF+od)* %€ (of+od)* "OTC%

where, V&Tz and 1733 are the estimated variance of estimators (MLEs) 62 and 62,
and éa%ag is the estimated covariance between 62 and 62. Then by using the

Beta(d, b) approximation, 100(1 — a)% confidence limits for p can be obtained.
The lower and upper limits of the 100(1 — a)% two-sided confidence interval are

thus obtained as Betaa(d, b) and Beta, «(&,b), respectively. Here Beta, (@, b)
2 2

stands for the 100yth percentile of Beta(d,b). In the cases where the ICC is

estimated to be zero, the expressions for @ and b are different from above; details
are given in Demetrashvili and Van den Heuvel (2015).

2.2.2. The Wald statistic: bootstrap and normal approximations
Let

(-p)
Yo = oo
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where p is the MLE of p and V(p) is its estimated asymptotic variance. We shall
explore the possibility of computing confidence limits for p using the usual
normal approximation for W,, and also by approximating its distribution using a
parametric bootstrap.

3. Simulation Studies

Having introduced several confidence intervals for p under the model (1.1), we
shall now carry out simulation results to evaluate and compare their performances
in terms of estimated coverage probabilities and expected widths. We have
considered only two-sided confidence intervals.

3.1. The simulation settings

We have used the simulation settings used in Demetrashvili and Van den Heuvel
(2015). The variance components used in the simulations have the following
values: ¢ = 0.001 and o2 = {0.009, 0.004, 0.0023, 0.0015, 0.001, 0.00067,
0.00043, 0.00025, 0.00011}. These choices give the ICC values 0.1, 0.2, 0.3, ... ,
0.9. Now recall our notation that we have m studies with n; responses in the ith
study. We shall assume a balanced design, that is, the n;s are all equal, having
common value, denoted by n. We have chosen (m,n) = (5, 5), (5, 8), (5, 20), (5,
30), (8, 5), (10, 5), (10, 10), (20, 10), and (30, 10). The dose levels (i.e., the x;;s)
were simulated from a Uniform (1, 21) distribution. The parameters 8, and 3,
were set equal to 0.8 and 16, respectively.

Even though the assumed non-linear model is (1.1), we shall also use another
scenario for the simulations; the model settings used in the simulations are given
below:

Simulation setting 1
Vij = (B1xij)/ (B2 + xij) + 0:2; + 0.2

where the z; and z;; are independent standard normal random variables.

Simulation setting 2

yij = (B2 + (A — B)xij)/ (B2 + xij)) + 0.2 + 0ez5,
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where the z; and z;; are once again independent standard normal random

variables. We note that the second simulation setting corresponds to our model
(1.2).

Throughout, we have used a 95% nominal level. It should be noted that
Demetrashvili and Van den Heuvel (2015) have reported numerical results only
for the first simulation setting.

3.2. Results on Coverage Probabilities and Expected Widths

In order to estimate the coverage probabilities and expected widths, we have used
10,000 simulations. The results are presented in Table 1 — Table 4. In the tables,
M1 and M2 refer to Modification 1 and Modification 2, respectively, given in
Section 2.1.

From the coverage probabilities reported in Table 1 and Table 3, we note that the
only approach that gives consistently good coverage probabilities is the
Modification 2 (M2), with M1 being a close second, regardless of the simulation
scenario. Both r(p) and the Wald statistic provide confidence intervals with poor
coverage, and these cannot be recommended for practical use. The coverages of
the Beta approach, reported in Table 1, are taken from Demetrashvili and Van den
Heuvel (2015), and correspond to the implementation of a two-step estimation
procedure based on nonlinear least squares and the restricted maximum
likelihood. The authors have not reported any coverage probabilities under the
second simulation setting, and we also did not carry out any simulations for the
Beta approach in the second simulation setting. We conclude from Table 1 that the
Beta approach is conservative, overall. In spite of this, the Beta approach does
give shorter expected widths in many instances, especially when p is small or
large (see Table 2). For moderate values of p both M1 and M2 provide smaller
expected widths, compared to that from the Beta approach. The expected widths
reported in Table 2 and Table 4 show that there is not much difference between
M1 and M2 in terms of the expected width of the confidence intervals. Table 3
and Table 4 do not include the Beta approach since Demetrashvili and Van den
Heuvel (2015) did not consider the simulation setting 2 in their numerical results,
and we did not carry out any simulations for the Beta approach under simulation
setting 2. Furthermore, in view of the poor coverage probability performance of
the confidence intervals based on r(p) and the Wald statistic, these were not
included while computing the expected width of the confidence intervals.
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Table 1: Coverage probabilities of the two-sided 95% confidence

intervals under simulation setting 1

Coverace probability
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Table 2: Expected widths of the 95% confidence intervals under simulation

setting 1
Expected wridth

m T fel M1 M2 Beta

5 5 0.1 0.524 0521 0.397
5 2 0.1 0521 0519 0.394
8 5 0.1 0528 0523 0.383
10 5 0.1 0.513 0515 0.373
10 10 0.1 0.497 0.499 0370
5 5 0.2 0.681 0692 0.579
5 2 0.2 0.673 0680 0.565
8 5 0.2 0.672 0681 0.569
10 5 0.2 0.661 0.674 0.553
10 10 0.2 0.657 0660 0.545
5 5 0.3 0.701 0. 706 0. 709
5 2 0.3 0.697 0. 702 0.702
8 5 0.3 0.682 0685 0.693
10 5 0.3 0.679 0682 0.672
10 10 0.3 0.645 0.648 0.631
5 5 0.4 0.651 O.eed 0.711
5 2 0.4 0.643 0652 0.697
8 5 0.4 0.647 0657 0.704
10 5 0.4 0.642 0654 0.700
10 10 0.4 0.629 0638 0.687
5 5 0.5 0.671 0686 0.736
5 8 0.5 0.680 0.690 0.728
8 5 0.5 0.683 0.684 0.732
10 5 0.5 0.668 0.673 0.727
10 10 0.5 0.649 0.657 0.708
5 5 0.6 0.600 0609 0.6504
5 2 0.6 0591 0597 0.596
8 5 0.6 0.594 0601 0.582
10 5 0.6 0.594 0592 0.580
10 10 0.6 0.583 0.584 0.577
5 5 0.7 0.562 0589 0.439
5 2 0.7 0.547 0571 0.421
8 5 0.7 0551 0576 0.432
10 5 0.7 0.543 0568 0.427
10 10 0.7 0.535 0544 0.418
5 5 0.8 0.473 0.489 0.394
5 8 0.8 0.467 0.484 0.391
8 5 0.8 0.471 0.486 0.388
10 5 0.8 0.463 0.469 0.377
10 10 0.8 0.432 0.438 0.368
5 5 0.9 0304 0306 0.313
5 2 0.9 0289 0292 0.297
8 5 0.9 0.303 0310 0.208
10 5 0.9 0287 0291 0283
10 10 0.9 0257 0262 0.251
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Table 3: Coverage probabilities of the two-sided 95% confidence

intervals under simulation setting 2

Coverage probability

m n p r(p) M1 M2

5 5 0.1 0.988 0.958 0.948
5 8 0.1 0.988 0.961 0.951
8 5 0.1 0.935 0.957 0.948
10 5 0.1 0.934 0.958 0.948
10 10 0.1 0.929 0.960 0.951
5 5 0.2 0.984 0.959 0.953
5 8 0.2 0.939 0.961 0.952
8 5 0.2 0.954 0.960 0.952
10 5 0.2 0.941 0.959 0.951
10 10 0.2 0.931 0.952 0.953
5 5 0.8 0.905 0.947 0.952
5 8 0.8 0.920 0.951 0.953
8 5 0.8 0.923 0.953 0.949
10 5 0.8 0.933 0.951 0.950
10 10 0.8 0.931 0.951 0.951
5 5 0.9 0.911 0.952 0.951
5 8 0.9 0.918 0.954 0.953
8 5 0.9 0.930 0.953 0.951
10 5 0.9 0.938 0.952 0.951
10 10 0.9 0.939 0.953 0.952

179
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Table 4: Expected widths of the 95% confidence intervals under simulation

setting 2
Expected width

m n p M1 M2

5 5 0.1 0.542 0.535
5 8 0.1 0.535 0.542
8 5 0.1 0.531 0.533
10 5 0.1 0.513 0.523
10 10 0.1 0.501 0.509
5 5 0.2 0.701 0.705
5 8 0.2 0.696 0.698
8 5 0.2 0.695 0.705
10 5 0.2 0.684 0.697
10 10 0.2 0.682 0.687
5 5 0.8 0.495 0.503
5 8 0.8 0.486 0.506
8 5 0.8 0.499 0.502
10 5 0.8 0.481 0.490
10 10 0.8 0.451 0.459
5 5 0.9 0.326 0.328
5 8 0.9 0.305 0.311
8 5 0.9 0.325 0.328
10 5 0.9 0.304 0.312
10 10 0.9 0.273 0.284

4. An example

We shall now take up the example considered in Demetrashvili and Van den
Heuvel (2015). The example is on the relationship between Dopamine D, receptor
and the psychopathology of diseases such as schizophrenia. For eight
antipsychotic medications, an individual participant data meta-analysis is reported
in Lako et al. (2013) with the goal of studying the relationship between a
prescribed dose and the response. In this meta-analysis, it was also important to
assess the magnitude of the variability between studies as a fraction of the total
variability. Clearly, this called for inference concerning the ICC.
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The data on eight antipsychotic medications consisted of 74 studies with 638
patients in total. The data on each drug was analyzed using the model (1.1). The
analysis that follows is based on data for three drugs: Amisulpride (5 studies, with
a total of 62 patients), Clozapine (17 studies, with a total of 106 patients, and
Halopridol (6 studies, with a total of 90 patients). The following table gives the
confidence intervals for the ICC for each drug, computed by the different
methods:

Table 5: 95% confidence intervals for the ICC p under the model (1.1)

Drug Method Lower Upper Width
Haloperidol M 0319 0.870 0.551
M2 0.307 0.892 0.585
Beta 0.468 0.875 0.407
Clozapine M1 0.034 0.516 0.482
M2 0.031 0.522 0.491
Beta 0.019 0.407 0.388
Amisulpride M 0.151 0.575 0424
M2 0.147 0.612 0.463
Beta 0.094 0.851 0.757

While the confidence intervals based on M1 nd M2 are somewhat similar, we note
that the one based on the Beta approach is shorter in the first two cases, but wider
in the third case. The maximum likelihood estimates of p are 0.682, 0.152 and
0.487, respectively, for Haloperidol, Clozapine and Amisulpride. Thus the
estimate is around 0.50 in the third case, and are somewhat towards the extremes
in the first and second cases. Thus the widths of the confdence intervals in the
example are consistent with what is noted for the expected widths in Table 2.

5. Discussion

The literature on higher order asymptotic procedures has demonstrated the
applicability of such procedures for accurate inference in scenarios where the
sample sizes may not be large. The book by Brazzale, Davison and Reid (2007)
gives a detailed discussion of different likelihood based higher order inference
procedures available in the literature. In the present work, we have taken up the
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application of two such procedures, due to DiCiccio, Martin and Stern (2001) for
the accurate interval estimation of the intraclass correlation coefficient (ICC) in a
specific nonlinear mixed effects model that includes a single additive random
effect. The ICC is a parameter that has wide applicability for the assessment of the
reliability of a measurement method, or of an experimental method. Our work
shows that the higher order procedures result in confidence intervals for the ICC
that accurately maintain the coverage probability. We have also compared the
resulting confidence intervals with another interval proposed in the literature,
obtained by approximating the distribution of the estimated ICC with a beta
distribution. The latter method is referred to as the beta approach, and it turns out
to be somewhat conservative. However, a comparison of the expected widths
shows that the beta approach is quite competitive.

In the context of very general linear mixed effects models, accurate inference for
the ICC has recently been obtained by Feng, Mathew and Adragni (2021), once
again by applying the higher order procedures. An advantage of the higher order
procedures is that they can be applied to any parametric function. Furthermore,
they are likelihood based, and have rigorous theoretical justifications. We hope
that this work will generate further interest in the application of higher order
procedures to various parametric inference problems.
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