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  Abstract  
 

The computation of confidence intervals for the intra-class correlation coefficient (ICC) is 

addressed under a nonlinear dose–response model that includes a single random effect. 

Likelihood based higher order asymptotic procedures are employed for the interval 

estimation of the ICC, and are noted to perform well in terms of maintaining the coverage 

probability. The results are applied to a case study taken from the literature dealing with a 

meta-analysis of the individual participant data used to investigate the association 

between various dose levels of antipsychotic medications and the corresponding 

responses. The ICC is used in the case study in order to assess the possible heterogeneity 

across the different studies. 

Keywords: Beta Approach; Dose-response Model; Heterogeneity; Meta-Analysis; 

Higher Order Asymptotics. 
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Professors Bimal Sinha and  Bikas Sinha have been my teachers, collaborators, 

friends and mentors.  In particular, Professor Bimal Sinha has been my senior 

colleague at the University of Maryland Baltimore County (UMBC) since 1985. 

His leadership was crucial in  building up a top-rated statistics program at UMBC, 

starting from scratch. Some of my best collaborative research was carried out 

under his inspiration. While his outstanding research accomplishments are well-

known, what I have found very touching is the way he has passionately looked out 
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for junior colleagues and students. If I was deserving of an academic opportunity 

or recognition, he took it up and pursued it even before I thought about it.   Suffice 

to say words fail if I try to express my gratitude. Professor Bikas Sinha’s frequent 

visits to our campus granted me the privilege to collaborate with him on a few 

research projects. I have always found his energy and excitement infectious. Thus 

it is a great privilege and honor to be contributing to this special issue of the 

International Journal of Statistical Sciences.  
 

1.  Introduction and Background  

The intraclass correlation, or the intraclass correlation coefficient (ICC), is the 

correlation between a pair of repeated measurements on the same subject. It is also 

the proportion of the total variance that is not explained by the within-subject 

errors. The ICC is often used as a measure of the reliability of a measurement 

method, or an experimental method. The article by Liljequist, Elfving and 

Roaldsen (2019) provides a detailed discussion of the ICC. In the context of linear 

mixed and random effects models, inference concerning the ICC has been well-

investigated in the literature; we refer to the work by Demetrashvili, Wit and Van 

den Heuvel (2016), and the recent article by Feng, Mathew and Adragni (2021) 

where accurate confidence intervals are developed for the ICC under linear mixed 

and random effects models. 

The present work takes up the interval estimation of the ICC in a specific non-

linear mixed effects model considered by Demetrashvili and Van den Heuvel 

(2015). The model was used in a meta-analysis application investigating the dose-

response relationship between different doses of several antipsychotic drugs and 

the dopamine    receptor occupancy. For eight antipsychotic medications, the 

meta-analysis was carried out by Lako et al. (2013). In order to briefly describe 

the scenario, let   denote the number of studies in the meta-analysis, with    

patients in the  th study, and suppose     denotes the dopamine    receptor 

occupancy on the  th patient in the  th study. In their work, Lako et al. (2013) 

modeled the quantity               as a non-linear mixed effects model where 

the mean is a non-linear function of the administered dose; however, an additive 

random effect was included in the model in order to account for possible between 

study heterogeneity. If   denotes the administered dose, the non-linear function 

that was used to model the mean, say         was the following form of the 

Michaelis-Menten curve:  



 

 

 

 

 

 

 

Feng, Mathew and Adragni: Interval Estimation of the Intraclass ...                          169 

 

 

 

          (
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where             is an unknown parameter vector. The parameter    has the 

range (0, 1]; it represents the maximum response of the drug in the population. In 

the literature, the notation E     is also used instead of   . The parameter    is 

assumed to be greater than 0, and it represents the dose associated with a     of 

response value, it is also denoted as EC   . 

Suppose there are   studies, and let     denote the  th dose level used in the  th 

study, with     denoting the corresponding response;   = 1, 2, ....,   ,   = 1, 2, ...., 

  . An additive random effect    is assumed for the unexplained among-study 

variation, and an error term     will take care of the within-study variability. Thus 

the assumed nonlinear mixed effects model is given by  

                                                                                     (1.1) 

where    and     are a independent random variables having the distributions 

         
   and           

  . Here we want to point out that even though the 

parameters    and    enter non-linearly in the model, the random effect    is an 

additive term. 

Based on the proposed nonlinear mixed effect model, the ICC is defined as the 

correlation coefficient on repeated measurements on the same patient in the same 

study, i.e., ICC = corr          ,     . Under the assumptions on the random 

variables    and     appearing in the model (1.1), we see that the ICC, to be 

denoted by  , has the expression  

                        
  

 

  
    

                                                                       (1.2) 

where   
  and   

  are the variances of    and    , respectively. From the expression 

in (1.2), we see that we can interpret the ICC as the proportion of variation 

unrelated to individuals in the total variation. 

It is the above set up that is considered in Lako et al. (2013), and taken up by 

Demetrashvili and Van den Heuvel (2015). The latter authors investigated the 

extent to which the between-study variability could be dominating, assessed using 

the ICC. In their work, Demetrashvili and Van den Heuvel (2015) have derived 

confidence limits for the ICC by the delta method, percentile bootstrap and an 
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approach referred to as the  beta-approach, and have compared them based on 

estimated coverage probabilities. The authors conclude that in terms of 

maintaining the coverage probability, the beta-approach is to be preferred over the 

solutions obtained using the delta method and the percentile bootstrap. 

In the present work, we shall investigate the interval estimation of the ICC by 

applying some likelihood based higher order asymptotic procedures due to 

DiCiccio, Martin and Stern (2001). We shall also compare our solution with that 

obtained using the beta-approach in terms of coverage probabilities and expected 

widths of the confidence intervals. The results will be illustrated using the 

example considered in Demetrashvili and van den Heuvel (2015). 

 

2.  Confidence intervals for the ICC 

We shall now discuss different methods for the interval estimation of the ICC 

parameter under the model (1.1). We shall propose and compare them based on 

their estimated coverage probabilities and expected widths. 

Let                 
   be the      response vector from the  th study, and let 

                                         
      be the corresponding 

     mean vector, where                      
  . Note that    is the vector 

consisting of the dose levels used in the  th study. Under the model (1.1), we have 

the multivariate normal distribution  

     [           ]                   
       

    
                      (2.1) 

    
 being an       matrix of ones. Let   be the     vector of unknown 

parameters:  

                       
    

                                                             (2.2) 

As a function of the parameter vector  , the log-likelihood function, say     , is 

given by  
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   [          
         ]     (2.3) 

where we use the notations            ,      
       

    
,   = 1, 2, ....,  , 

and   ∑   
     . The maximum likelihood estimators of the parameters can be 

numerically obtained by maximizing the log-likelihood function (2.3); clearly, 
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closed-form solutions can’t be found. A quasi-Newton optimization algorithm can 

be used to obtain the MLEs. 

With the parameters as defined in (2.2), let  ̂ denote the MLE of  , and  ̂  denote 

the constrained MLE of     for a fixed value of the ICC  . The signed log-

likelihood root      is given below, and its asymptotic normality, can be used for 

large sample inference concerning  :  

              ̂    [     ̂     ̂   ]
                                    (2.4) 

where sign    is    if     and    if    . Confidence limits for   can be 

obtained by equating      to standard normal percentiles, and solving for  . For 

example, a 100     % upper confidence limit for   is the solution of   to the 

equation         , where    is the 100     th percentile of the standard 

normal distribution. Once the data are available, the required solution can be 

numerically obtained. 

2.1. Two Higher Order Procedures 

Higher order asymptotics consist of modifying the signed log-likelihood ratio test 

statistic      so that accurate small sample performance can be achieved. Here we 

shall not provide any technical details, and the necessary regularity conditions. In 

fact the necessary technical conditions are not entirely clear, since we are not in an 

iid set up. Nevertheless, we shall apply the higher order modifications, and then 

verify their accuracy based on simulations. The higher order modifications of 

     that we are proposing are based on the methodology developed in DiCiccio, 

Martin and Stern (2001). We shall refer to these as Modification 1 (M1) and 

Modification 2 (M2). 

2.1.1.  Modification 1 

In order to present the first modification, let the mean and variance of    ) be 

denoted by              and                 , where we recall that   

is the parameter vector defined in (2.2). The modified quantity, to be denoted by 

     , is a standardization of      using the mean    ̂   and variance      ̂  , 

where  ̂  is the MLE of   for a fixed value of  . Thus  

                   
        ̂  

      ̂                                                                     (2.5) 
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We note that the only unknown parameter involved in       is the ICC  . A 

normal approximation for the distribution of       is known to be significantly 

more accurate compared to that for     . Thus confidence limits for   obtained 

using       as a pivot is expected to be more accurate in terms of maintaining the 

coverage probability. 

It should however be noted that analytic expressions for      and      are not 

available, and the computation of    ̂   and      ̂   is an issue that needs to 

be addressed. As suggested in DiCiccio, Martin and Stern (2001), these quantities 

can be numerically obtained by proceeding as follows. For a fixed value of  , 

generate observation vectors, say   
 ,   = 1, 2, ...,  , under the model (2.1) with 

the parameter   replaced by  ̂ . Compute the value of      given in (2.4), using 

  
  in the place of   ,   = 1, 2, ...,  ; let       denote the value of      so 

obtained. For the same fixed value of  , repeat this several times, say   times, 

resulting in   values of      , say   
    ,   = 1, 2, ....,  . The mean and variance 

of these   values give estimates of    ̂   and      ̂  , respectively. Once 

   ̂   and      ̂   are thus obtained, the statistic       given in (2.5) can be 

evaluated at the fixed value of  . Equating       to appropriate standard normal 

percentiles, confidence limits for   can be obtained. In order to implement such a 

methodology, it is necessary to repeat the procedure just outlined for a grid of 

values of  , until a value of   is found so that       is equal to the appropriate 

percentile of the standard normal distribution. We note that a 100     % upper 

confidence limit for   is obtained as the solution to          , where    is the 

100     th percentile of the standard normal distribution. Similarly, two-sided 

confidence limits are obtained by solving            and            . The 

algorithm given below gives the steps necessary to compute the confidence limits 

for   using the procedure just outlined; the algorithm is presented for the 

computation of a 100     % upper confidence limit for  . 

Algorithm 1: Steps for computing a 100     % upper confidence limit for   

using the normal approximation for the statistic       given in (2.5)  

1.  Compute the MLE  ̂  of the parameter vector   by maximizing the log-

likelihood function      in (2.3). 

2.  Fix a value for  , say  ̃, and maximize      subject to the constraint that   

 ̃. Let the corresponding estimate of   be denoted as  ̂ ̃.  
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3.  Compute    ̃  using the expression given in (2.4). 

4.  Generate an observation vector   
  under the model (2.1) with the parameters 

replaced by  ̂ ̃,   = 1, 2, ...,  . Compute the value of    ̃  in (2.4) using   
  in the 

place of   ,   = 1, 2, ...,  . Let     ̃  denote the value of    ̃  so obtained.  

5.  Repeat the above step several times, say   times, resulting in   values of 

    ̃ , say   
   ̃ ,   = 1, 2, ....,  . Compute the mean and variance of these   

values, to be denoted by    ̂ ̃  and      ̂ ̃ , respectively.  

6.  Using the values of    ̂ ̃  and      ̂ ̃  so obtained, compute the statistic 

    ̃  in (2.5).  

7.  If     ̃     , then  ̃ is the 100     % upper confidence limit for  . If 

    ̃     , adjust the value of  ̃ in Step 2, and repeat steps 2-6, until a value is 

found for which           .  
 

2.1.2.  Modification 2 

 A second higher order procedure given in DiCiccio, Martin and Stern (2001) 

starts with a hypothesis testing scenario:  

                                                             

for a specified   . The proposed method consists of computing the p-value as  

  ̂  
             

where       is defined in (2.4), and      denotes its observed value. Note that the 

p-value given above is not computed using an asymptotic normal distribution of 

    ; rather, it is computed by Monte carlo simulation when the parameter   takes 

the value  ̂  
. In order to compute confidence limits for  , we proceed as follows. 

Generate   parametric bootstrap samples when   takes the value    and the 

parameter   takes the value  ̂  
. Now compute   values of      , say   

     ,   = 

1, 2, ....,  , based on the   generated samples, and compute the proportion of the 

  
      values that are less than     . If the value    is such that this proportion is 

equal to      , then such a value    is a 100     % upper confidence limit 

for  . For obtaining a lower confidence limit for  , we want    such that the 

proportion of the   
      values that are less than      is equal to  . 
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2.2. Other Methods 

2.2.1. Beta-approach (Demetrashvili and Van den Heuvel (2015)) 

The beta-approach proposed in Demetrashvili and Van den Heuvel (2015), 

consists of approximating the distribution of the MLE  ̂  of   by a beta 

distribution:  ̂           , where     and    . Let  ̂ ̂
  be the estimated 

variance of  ̂ (see below). Equating the mean and variance of           to  ̂ and 

 ̂ ̂
 , respectively, we can solve for   and  . The solutions will be denoted by  ̂ and 

 ̂, respectively, and are given by  

  ̂  
 ̂[ ̂    ̂   ̂ ̂

 ]

 ̂ ̂
  

  ̂  
    ̂ [ ̂    ̂   ̂ ̂

 ]

 ̂ ̂
  

A first-order Taylor expansion is used in Demetrashvili and Van den Heuvel 

(2015) in order to estimate the variance of  ̂, and the estimated variance is given 

by  

  ̂ ̂
  

 ̂ 
 

  ̂ 
   ̂ 

   
 ̂ ̂ 

  
 ̂ 

 

  ̂ 
   ̂ 

   
 ̂ ̂ 

  
  ̂ 

  ̂ 
 

  ̂ 
   ̂ 

   
 ̂ ̂ 

  ̂ 
  

where,  ̂ ̂ 
  and  ̂ ̂ 

  are the estimated variance of estimators (MLEs)  ̂ 
  and  ̂ 

 , 

and  ̂ ̂ 
  ̂ 

  is the estimated covariance between  ̂ 
  and  ̂ 

 . Then by using the 

      ̂  ̂  approximation,         % confidence limits for   can be obtained. 

The lower and upper limits of the 100     % two-sided confidence interval are 

thus obtained as      

 
  ̂  ̂  and       

 

 
  ̂  ̂ , respectively. Here        ̂  ̂  

stands for the 100 th percentile of       ̂  ̂ . In the cases where the ICC is 

estimated to be zero, the expressions for  ̂ and  ̂ are different from above; details 

are given in Demetrashvili and Van den Heuvel (2015). 

2.2.2.  The Wald statistic: bootstrap and normal approximations 

Let  

   
  ̂    

[ ̂ ̂ ]   
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where  ̂ is the MLE of   and  ̂  ̂  is its estimated asymptotic variance. We shall 

explore the possibility of computing confidence limits for   using the usual 

normal approximation for   , and also by approximating its distribution using a 

parametric bootstrap. 
 

3.  Simulation Studies 

Having introduced several confidence intervals for   under the model (1.1), we 

shall now carry out simulation results to evaluate and compare their performances 

in terms of estimated coverage probabilities and expected widths. We have 

considered only two-sided confidence intervals. 

3.1. The simulation settings 

We have used the simulation settings used in Demetrashvili and Van den Heuvel 

(2015). The variance components used in the simulations have the following 

values:   
        and   

  = {0.009, 0.004, 0.0023, 0.0015, 0.001, 0.00067, 

0.00043, 0.00025, 0.00011}. These choices give the ICC values 0.1, 0.2, 0.3, ... , 

0.9. Now recall our notation that we have   studies with    responses in the  th 

study. We shall assume a balanced design, that is, the   s are all equal, having 

common value, denoted by  . We have chosen       = (5, 5), (5, 8), (5, 20), (5, 

30), (8, 5), (10, 5), (10, 10), (20, 10), and (30, 10). The dose levels (i.e., the    s) 

were simulated from a Uniform (1, 21) distribution. The parameters    and    

were set equal to 0.8 and 16, respectively. 

Even though the assumed non-linear model is (1.1), we shall also use another 

scenario for the simulations; the model settings used in the simulations are given 

below: 

 Simulation setting 1  

                                

where the    and     are independent standard normal random variables. 

Simulation setting 2  
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where the    and     are once again independent standard normal random 

variables. We note that the second simulation setting corresponds to our model 

(1.1). 

Throughout, we have used a 95% nominal level. It should be noted that 

Demetrashvili and Van den Heuvel (2015) have reported numerical results only 

for the first simulation setting. 

3.2. Results on Coverage Probabilities and Expected Widths 

In order to estimate the coverage probabilities and expected widths, we have used 

10,000 simulations. The results are presented in Table 1   Table 4. In the tables, 

M1 and M2 refer to Modification 1 and Modification 2, respectively, given in 

Section 2.1. 

From the coverage probabilities reported in Table 1 and Table 3, we note that the 

only approach that gives consistently good coverage probabilities is the 

Modification 2 (M2), with M1 being a close second, regardless of the simulation 

scenario. Both      and the Wald statistic provide confidence intervals with poor 

coverage, and these cannot be recommended for practical use. The coverages of 

the Beta approach, reported in Table 1, are taken from Demetrashvili and Van den 

Heuvel (2015), and correspond to the implementation of a two-step estimation 

procedure based on nonlinear least squares and the restricted maximum 

likelihood. The authors have not reported any coverage probabilities under the 

second simulation setting, and we also did not carry out any simulations for the 

Beta approach in the second simulation setting. We conclude from Table 1 that the 

Beta approach is conservative, overall. In spite of this, the Beta approach does 

give shorter expected widths in many instances, especially when   is small or 

large (see Table 2). For moderate values of   both M1 and M2 provide smaller 

expected widths, compared to that from the Beta approach. The expected widths 

reported in Table 2 and Table 4 show that there is not much difference between 

M1 and M2 in terms of the expected width of the confidence intervals. Table 3 

and Table 4 do not include the Beta approach since Demetrashvili and Van den 

Heuvel (2015) did not consider the simulation setting 2 in their numerical results, 

and we did not carry out any simulations for the Beta approach under simulation 

setting 2. Furthermore, in view of the poor coverage probability performance of 

the confidence intervals based on      and the Wald statistic, these were not 

included while computing the expected width of the confidence intervals. 
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Table  1: Coverage probabilities of the two-sided     confidence 

intervals under simulation setting 1 
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Table  2: Expected widths of the     confidence intervals under simulation 

setting 1 
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Table  3: Coverage probabilities of the two-sided     confidence 

intervals under simulation setting 2 
     

     Coverage probability 

                  M1   M2  

5   5   0.1 0.988  0.958   0.948  

5   8   0.1 0.988  0.961   0.951  

8   5   0.1 0.935  0.957   0.948  

10   5   0.1 0.934  0.958   0.948  

10   10   0.1 0.929  0.960   0.951  

          

5   5   0.2 0.984  0.959   0.953  

5   8   0.2 0.939  0.961   0.952  

8   5   0.2 0.954  0.960   0.952  

10   5   0.2 0.941  0.959   0.951  

10   10   0.2 0.931  0.952   0.953  

          

5   5   0.8 0.905  0.947   0.952  

5   8   0.8 0.920  0.951   0.953  

8   5   0.8 0.923  0.953   0.949  

10   5   0.8 0.933  0.951   0.950  

10   10   0.8 0.931  0.951   0.951  

          

5   5   0.9 0.911  0.952   0.951  

5   8   0.9 0.918  0.954   0.953  

8   5   0.9 0.930  0.953   0.951  

10   5   0.9 0.938  0.952   0.951  

10   10   0.9 0.939  0.953   0.952  
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Table  4: Expected widths of the     confidence intervals under simulation 

setting 2 
     

     Expected width 

             M1   M2  

5   5   0.1   0.542   0.535  

5   8   0.1   0.535   0.542  

8   5   0.1   0.531   0.533  

10   5   0.1   0.513   0.523  

10   10   0.1   0.501   0.509  

         

5   5   0.2   0.701   0.705  

5   8   0.2   0.696   0.698  

8   5   0.2   0.695   0.705  

10   5   0.2   0.684   0.697  

10   10   0.2   0.682   0.687  

         

5   5   0.8   0.495   0.503  

5   8   0.8   0.486   0.506  

8   5   0.8   0.499   0.502  

10   5   0.8   0.481   0.490  

10   10   0.8   0.451   0.459  

         

5   5   0.9   0.326   0.328  

5   8   0.9   0.305   0.311  

8   5   0.9   0.325   0.328  

10   5   0.9   0.304   0.312  

10   10   0.9   0.273   0.284  

4.  An example 

We shall now take up the example considered in Demetrashvili and Van den 

Heuvel (2015). The example is on the relationship between Dopamine    receptor 

and the psychopathology of diseases such as schizophrenia. For eight 

antipsychotic medications, an individual participant data meta-analysis is reported 

in Lako et al. (2013) with the goal of studying the relationship between a 

prescribed dose and the response. In this meta-analysis, it was also important to 

assess the magnitude of the variability between studies as a fraction of the total 

variability. Clearly, this called for inference concerning the ICC. 
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The data on eight antipsychotic medications consisted of 74 studies with 638 

patients in total. The data on each drug was analyzed using the model (1.1). The 

analysis that follows is based on data for three drugs: Amisulpride (5 studies, with 

a total of 62 patients), Clozapine (17 studies, with a total of 106 patients, and 

Halopridol (6 studies, with a total of 90 patients). The following table gives the 

confidence intervals for the ICC for each drug, computed by the different 

methods: 

Table  5:     confidence intervals for the ICC   under the model (1.1) 
     

 
  

While the confidence intervals based on M1 nd M2 are somewhat similar, we note 

that the one based on the Beta approach is shorter in the first two cases, but wider 

in the third case. The maximum likelihood estimates of   are 0.682, 0.152 and 

0.487, respectively, for Haloperidol, Clozapine and Amisulpride. Thus the 

estimate is around 0.50 in the third case, and are somewhat towards the extremes 

in the first and second cases. Thus the widths of the confdence intervals in the 

example are consistent with what is noted for the expected widths in Table 2. 

5.  Discussion 

The literature on higher order asymptotic procedures has demonstrated the 

applicability of such procedures for accurate inference in scenarios where the 

sample sizes may not be large. The book by Brazzale, Davison and Reid (2007) 

gives a detailed discussion of different likelihood based higher order inference 

procedures available in the literature. In the present work, we have taken up the 
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application of two such procedures, due to DiCiccio, Martin and Stern (2001) for 

the accurate interval estimation of the intraclass correlation coefficient (ICC) in a 

specific nonlinear mixed effects model that includes a single additive random 

effect. The ICC is a parameter that has wide applicability for the assessment of the 

reliability of a measurement method, or of an experimental method. Our work 

shows that the higher order procedures result in confidence intervals for the ICC 

that accurately maintain the coverage probability. We have also compared the 

resulting confidence intervals with another interval proposed in the literature, 

obtained by approximating the distribution of the estimated ICC with a beta 

distribution. The latter method is referred to as the beta approach, and it turns out 

to be somewhat conservative. However, a comparison of the expected widths 

shows that the beta approach is quite competitive. 

In the context of very general linear mixed effects models, accurate inference for 

the ICC has recently been obtained by Feng, Mathew and Adragni (2021), once 

again by applying the higher order procedures. An advantage of the higher order 

procedures is that they can be applied to any parametric function. Furthermore, 

they are likelihood based, and have rigorous theoretical justifications. We hope 

that this work will generate further interest in the application of higher order 

procedures to various parametric inference problems. 
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