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Abstract

In this paper, we proposed some modified interval estimators, namely the modified
adjusted degrees of freedom (ADJ*), modified large-sample (LS*), and the augmented-
large-sample (ALS*) confidence intervals for estimating the population process capability
index, Cp. A simulation study has been conducted to compare the performance of the
proposed interval estimators with the existing Exact, ADJ, LS, ALS and the modified
trimmed standard deviation confidence intervals. We consider both simulated coverage
probability and average width as a performance criterion. Simulation results evident that
the exact method performed the best under normal distribution, while the proposed
confidence intervals performed well for most of cases for skewed distribution. For
illustration purposes, two real-life data from industry are analyzed which supported the
simulation results to some degree. The proposed methods can be recommended to be used
by the practitioners in various fields of production and engineering.

Keywords: Average Width, Confidence Interval, Coverage Probability, Process
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International Journal of Statistical Sciences (1JSS) in honor of the twin
statisticians, Professor Bikas K. Sinha and Professor Bimal K. Sinha. Due to their
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outstanding and invaluable contributions in statistics, both are very well known
and respected statisticians in the world. I used to call them as “Bikas Da” and
“Bimal Da’ for about twenty years. | meet first, when both have visited my
department, Department of Statistics at Florida International University as invited
speakers occasionally between 2004 to 2006. | was also fortunate to visit Bikas Da
at the Indian Statistical Institute, Calcutta, India in 2006. Their love, moral
support, and positive attitude towards my profession have been highly
inspirational to me. 1 am thankful to the Department of Statistics, Rajshahi
University for giving me the opportunity to publish this article in 1JSS in honor of
Bikas Da and Bimal Da. | wish them a long life filled with happiness and good
health.

1. Introduction

The process capability analysis (PCA) is a set of calculations used to test whether
the evaluation meets the specification requirements Process Capability Index
(PCI) is a simple measure producer’s capability to produce a product within the
customer’s tolerance range. The process capability index (PCI) is defined as the
quotient between the length of the acceptance interval and six times the standard
deviation obtained as a result of the design and production processes. The process
capability index (also called Cp) tells us whether the result is between the
specification limits (Maiti and Saha, 2012). A higher Cp value indicates a better
the process. First, we need to set up a lower specification limit (LSL) and upper
specification limit (USL) for the process given according to some specifications
defined by some predefined standards not relating to the nature of the process
itself.

Let us assume that the quality characteristic of interest follows a normal
distribution with mean (p) and standard deviation (o). A capable process will have
almost all the measurements being within the specification limits. Therefore, the
quality characteristic outside the LSL and USL is to be considered as
nonconforming. The population process capability index (Cp) is defined as a ratio
in equation (1.1), where we would like to know the how much wider is the range
of LSL to USL than the six-Sigma range where 99.73% of the items will fall
within statistically. The higher the ratio of specification width (USL-LSL) over
the process spread (6c), the higher capability of the process to produce fewer non-
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conforming products. The population process capability index can be defined as
follows:

USL-LSL
C., =

p 60 (1.1)

where USL= upper specification limit and LSL=lower specification limit and o is
the process standard deviation. As we know when the Cp value is higher than 1,
the process is considered capable while the opposite being not capable or poor in
terms of quality measure. A Cp value higher than 1.67 is considered as an
indicator of an excellent process and so on. In the real-world processes, we can
replace ¢ with the sample standard deviation S to get a point estimation of the Cp.
Moreover, A more useful interval estimate of the Cp, the confidence intervals are
usually computed too which is called the exact CI of Cp. More on capability
indices under both normal and non-normal distributions, we refer to Kane (1986),
Pearn et al. (1992, 1994, 1995), Kotz and Lovelace (1998), Yeh and Bhattacharya
(1998) and very recently Abu-Shawiesh et al (2020), among others.

The population Cp heavily depends on the assumption that the quality
characteristic measurements are independent and normally distributed. However,
there are many situations of violations of these assumptions and therefore the
exact confidence interval (CI) for the process capability index (Cp) may not be
accurate. Many authors proposed robust method which is better than the exact
confidence interval (Cl) in these situations. Panichkitkosolkul (2016) considered
revisions of the confidence intervals of the variance term under non-normality and
proposed several robust Cls for Cp. Abu-Shawiesh et al, (2020) proposed a robust
confidence interval for the process capability index (Cp) by means of a robust
modified trimmed standard deviation (MTSD=ST+). Based on these literatures,
especially Abu-Shawiesh et al,. (2020) and Panichkitkosolkul (2016), we
proposed modified confidence intervals by replacing the sample mean with the
sample median in confidence intervals in Abu-Shawiesh et al (2020).

The rest of the paper is organized as follows: In section 2, we present some
existing and proposed confidence intervals. A simulation study has been
conducted in section 3. As applications, two real life data are analyzed in section
4. Finally, some concluding remarks are outlined in section 5.
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2. Statistical Methodology

In this section, we will discuss about some confidence interval estimators. Since,
in real life, most of the data do not follow the normality assumptions, we will
consider some interval estimators for Cp when the data do not follow the
normality assumption.

2.1. The Exact Confidence Interval

Suppose X represents the quality characteristics under study. Let X3, Xo, ..., X, be
a random sample of size n drawn from a normal population with mean p and
standard deviation o. If the process standard deviation is unknown, it can be

estimate from the sample standard deviations, S

The exact (1-a)100% confidence interval (CI) for the population process
capability index, Cp is obtained as follows:

Xzo.' Xz a
A Gn-1) 4 (1-5n-1)
Clgxact = Cp 721_1 , Cp —n2—1 (2.2)
where
A USL-LSL n(x;—%)2
Cp = and s = [Z=rd”
6s n—-1

2.2. The Robust Confidence Interval

Let X1, X, ..., Xn be a random sample of size n from a normal distribution with
process mean p and process standard deviation o. The r-times symmetrically
trimmed random sample is obtained by dropping both lowest and highest r values
from both end, using the following formula:

_ 1 _
Xr = — XIS 41 X() (2.2)

where r=[an] represents the greatest integer and trimming is done for 0% (0 < a
<0.5) of the sample size n. The sample standard deviation can be calculated as
follows.

_ \2
Z?=r+1(x(i) _xT)

n—-2r-1

(2.3)
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Then the confidence intervals can be computed using Equations (2.1) and (2.3)
with S replace by ST* in (2.4).

67 = MTSD = S; = 1.4826 s; (2.4)

Following, Abu-Shawiesh et al. (2020), the robust (1-0)100% confidence interval
(CI) for the population process capability index, Cp is obtained as follows

A X?%,n—l) A X(Zl—%,n—l)
Clrobust = | Cp -1’ Cp 1 (2.5)
A« _ USL-LSL 2 2 ) :
where €, = oo XEn-1) and X(l—g,n—  are the o/2 and 1-0/2 quantiles of

the Chi-square distribution with n-1 degrees of freedom (DF). For more on robust
confidence interval, we refer Yeh and Bhattacharya (1998) and Abu-Shawiesh et
al. (2020) among others.

2.3. Confidence Intervals for Cp under Non-normality

Originally, the confidence intervals for the variance under non-normality was
proposed by Hummel and Hettmansperger (2004) and Burch (2014) and are
further described in detail in Abu-Shawiesh et al. (2020). In non-normal
situations, the coverage probability of the confidence interval can be considerably
below 1—a. Hummel and Hettmansperger (2004) presented a confidence interval
for population variance by adjusting the degrees of freedom of chi-square
distribution. Panichkitkosolkul (2020) proposed three confidence intervals for the
process capability index Cp based on the confidence intervals for the variance
proposed by Hummel and Hettmansperger (2004) and Burch (2014) and provided
them in the following subsections.

2.3.1. The Adjusted Degrees of Freedom Confidence Interval (ADJ)

The (1 — a)100% confidence interval for the Cp based on the confidence interval
for o2 by adjusting the degrees of freedom of chi-square distribution is given by

_ [usL-LsL /)(Za/zy USL—LSL ,X%-a/z_?
Clapy _< 65 # ' 6S 7 (2.6)

where the adjusting the degree of freedom of chi-squared distribution is given by
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~ 2n
ey e
and
. n(n+1) (X —X)* 3(n—1)2
V= ti—Dm-2)(n-3) 5% T m—2)(n-3)°

2.3.2. Large-Sample Confidence Interval for the Variance (LS)

The (1 — a)100% confidence interval for the Cp based on the large-sample
confidence interval for a2 is given by

USL—-LSL USL-LSL

6S\/exp(zl_a/2\/z) ’ 65\/69610(—21—05/2‘/2)

CILS = (27)

G+2n(n-1)

where A = ~-———, S2=m-1)"TYL.(X; —X)?, and

_ n—1
_(n—Z)(n—3)

with g, = % —3,m, =n~ 'Y, (X; — X)*and m, = n"1 T2, (X; — X)2.

m;

Gy

[(n—1)g, + 6]

2.3.3. Augmented-Large-Sample Confidence Interval for the Variance (ALS)

The (1 — a)100% confidence interval for the Cp based on the augmented-large-
sample confidence interval for o2 is given by

USL—LSL USL—LSL
)
6S\/exp(zl_a/2\/§+C) 65vVexp(=z1-a/2)

W, and k, 5 = (n+1) G, (1 + %)

n-1

Clys = (2-8)

where B = var(log(5?)), C=

2.4. Modification of ADJ, LS and ALS confidence intervals

Motived by the robust truncated confidence interval in section 2.2, we would like
to use the sample median which is more resistant to outliers and skewed
distribution, to define the sample standard deviation. Combined with the proposed
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methods in 2.3, we will propose three new confidence intervals by
modifying Equations (2.6), (2.7) and (2.8) just by replacing each S by S*

S§* = fw (2.9)

where Md= median of the observations, Xy, X....., Xn

2.4.1. Modified Adjusted Degrees of Freedom Confidence Interval (ADJ)

The (1 — a)100% confidence interval for the Cp based on the confidence interval
for o2 by adjusting the degrees of freedom of chi-square distribution is given by

2
_ [ USL-LSL |Xq/27 USL—-LSL [Xi_a/27
Clapy = < o5 ’ Pl ,’ . (2.10)

where the adjusting the degree of freedom of chi-squared distribution is given by

) 2n
Ty =
Y79 +2n/(n—1)

and

L nn+1) (X, —Md)* __3(n- 1)2
=G —Dm=-2)n-3) gt n—2)(n-3)°

2.4.2. Modified large-Sample Confidence Interval for the Variance (LS)

The (I — a)100% confidence interval for the Cp based on the large-sample
confidence interval for a2 is given by

CILS* — USL-LSL , USL-LSL (211)
6S*\/exp(zl_a/zx/z) 65*\/99519(—21—05/2\/2)
where A = S2+20@7D g Gy = ———[(n — 1) gy + 6]

(n-2)(n-3)

with g,, = Z—; —3,my, =n" 1Y, (X; — Md)*and m,, = n" 1 Y1 (X; — Md)2.

2%
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2.4.3. Modified Augmented-Large-Sample Confidence Interval for the
Variance (ALS)

The (1 — @)100% confidence interval for the Cp based on the augmented-large-
sample confidence interval for o2 is given by

USL—-LSL USL—-LSL
6S*\/exp(zl_g\/B*+C*),65*\/exp(—zl_g\/B*+C*)
2 2

ke_5+22nn/(n—1), and Ee,S _ (n+1) G,. (1 n 5%)

n-1

(2.12)

Clyse =

where B* = var(log(5*?)), C*=
and S is defined in equation (2.9).

3. Simulation Study

Since a theoretical comparison among the interval estimators is difficult, a
simulation study is conducted in this section. Statistical software R 4.1.1 is used to
compare the performances of the proposed intervals for the following normal and
non-normal distributions: (i) N (50, 1) (ii) Gamma (4, 2); (iii) Gamma (0.75,
0.867) and (iv) Gamma (0.25, 0.50) distributions. The number of simulation
replications was 50000 for each case. Random samples were generated from each
of the above mentioned distributions with Cp =1.0 and samples sizes n=10, 25, 50
and 100. Coverage probability (CP) and average width (AW) of selected Cls were
measured for each case. The most common 95% confidence interval (o=0.05) is
used for measuring confidence level. When (a=0.05), an interval has perfect
performance in terms of CP that will capture the true Cp between the lower and
upper limits 95% of the time. The estimated CP and AW for this simulation study
are given respectively by:

A H(LSCpsU)

Yot (Ui—Ly)
p M

and AW = : (3.1)

where #(L <Cp <U) denotes the number of simulation runs for which Cp lies
within confidence interval. We generated the following distributions in Table 3.1
for simulation comparisons. The true values of the process capability index Cp,
LSL and USL are set in the Table 3.2.



Kibria and Chen: Comparison on Some Modified Confidence Intervals... 153

Table 3.1: Probability distributions and the coefficient of skewness for Monte
Carlo simulation.

Probability Distributions Coefficient of Skewness
N(50,1) 0.000
Gamma(4,2)+48 1.000
Gamma(0.75,0.867)449.1340 2.309
Gamma(0.25,0.5)+49.5 4.000

Table 3.2: True values of Cp, LSL and USL.

True Values of C,, | LSL USL
1.00 47.00 | 53.00

1.33 46.01 | 53.99
1.50 45.50 | 54.50
1.67 44.99 | 55.01

2.00 44.00 | 56.00

The sample sizes were set at n=30,50,75 and 100 and the number of simulation
trials was 50,000. The nominal level was fixed at 0.95. The simulated CPs and
AWs for each of the distributions described above are presented in Tables 3.3-3.4
for N(50,1), Gamma (4,2), Gamma(0.75, 0.867) and Gamma (0.25, 0.5)
respectively. For clear understanding, CPs and AWSs for considered n are
presented in Figures 3.1-3.4 respectively. From these Tables we may observe that
when data are generating from N(50,1) distribution, the exact method has
estimated coverage probabilities close to nominal level 0.95 for all sample sizes.
However, the proposed methods ALS*, LS* and ADJ* are performing better than
the corresponding existing methods ALS, LS and ADJ in the sense of higher
coverage probabilities. Robust method performed the worse is left for the further
study. The expected length for all methods do not differ significantly. However,
Robust methods have the shortest length, while LS* method has the widest length.
It may be noted that when sample sizes increase the expected length decreases for
all methods. When the data are generated from skewed distributions (Gamma), the
proposed methods ALS*, LS* and ADJ* are performing better than the rest of the
intervals in the sense of high coverage probablities. Both exact and robust
methods performed poorly that need for further study.
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Table 3.3: Coverage probability and average length for N(50,1) simulations.

Coverage Probability Average Length

Methed |n\Cp | 1 133 15 167 |2 1 133 15 167 |2
30 | 09501 (09498 | 0.9490 0.9515 | 0.9483 | 0.5258 | 0.6991 | 0.7885 | 0.8774 | 1.0519
EXACT |50 | 0.9479| 09304 | 0.9491 0.9497 [ 0.9479 | 0.4006 | 0.5335 | 0.6017 | 0.6690 | 0.8020
75 [ 09510 | 09304 | 0.9494 09499 | 09493 [ 03247 | 04319 | 04873 | 0.5425 | 0.6496
100 | 0.9483 | 09303 | 0.9505 0.9510 [ 0.9502 | 0.2804 | 03726 | 0.4205 | 0.4679 | 0.5605
30 | 04798 [ 04772 | 0.4787 0.4738 [ 04792 | 0.4114 | 05468 | 0.6168 | 0.6866 | 0.8233
TEUNC |50 | 04059 | 04132 | 04117 04078 [ 04128 | 03244 | 04320 | 04873 | 0.5418 | 0.6495
5% 75 | 0275202798 | 0.2818 0.2814 [ 02770 | 0.2642 | 03515 | 0.3966 | 0.4415 | 0.5285
100 | 0.3435| 03385 | 0.3428 0.3399 [ 0.3405 | 0.2376 | 03157 | 0.3564 | 03965 | 04751
30 [ 0.8820| 08854 |0.8834 0.8858 | 0.8843 | 0.5221 | 0.6942 | 0.7836 | 0.8715 | 1.0460
TRUNC | 50 | 08832 (08845 | 08846 0.8849 | 0.8836 | 0.4020 | 0.5352 | 0.6036 | 0.6712 | 0.8048
10% 75 | 0.8810( 08806 | 0.8802 0.8765 | 0.8803 | 0.3200 | 0.4257 | 0.4803 | 0.5346 | 0.6400
100 | 0.8811 | 0.8847 | 0.8834 0.8859 | 0.8803 | 0.2835 | 0.3766 | 0.4253 | 0.4732 | 0.3669
30 [ 0938109388 | 09361 0.9396 | 0.9362 | 0.5354 | 0.7114 | 0.8029 | 0.8939 | 1.0731
ATS 50 | 093905 (00404 | 09378 0.9402 [ 0.9378 | 0.4022 | 0.5354 | 0.6038 | 0.6714 | 0.8058
75 [ 09434 (09435 | 0.9411 09427 | 09420 [ 03247 | 04318 | 04872 | 0.5422 | 0.64588
100 | 0.9413 | 09443 | 0.9447 0.9443 [ 09428 | 0.2802 | 03718 | 0.4203 | 04672 | 0.5601
30 | 09386 (09390 | 09367 0.9391 | 0.9368 | 0.5442 | 0.7216 | 0.8154 | 0.9082 | 1.0907
ATS* |50 | 00939109405 | 0.9387 0.9409 | 0.9381 | 0.4052 | 0.5394 | 0.6083 | 0.6767 | 0.8123
73| 09442 (09434 | 0.9423 0.9434 [ 0.9426 | 0.3264 | 0.4330 | 0.4897 | 0.5450 | 0.6521
100 | 0.9416 | 09446 | 0.9448 09443 | 09435 [ 02811 | 03731 | 04217 | 0.4689 | 0.3620
30 | 09202 (00288 | 0.9286 0.9306 | 0.9269 | 0.5284 | 0.7021 | 0.7924 | 0.8821 | 1.0589
LS 30 | 09345 [ 09358 | 0.9337 0.9364 | 0.9338 | 0.4008 | 0.5336 | 0.6017 | 0.6692 | 0.8030
75| 09407 [ 09402 | 09379 0.0403 [ 0.9388 | 0.3246 | 04317 | 0.4870 | 0.5420 | 0.6486
100 | 0.9399 | 09421 | 0.9423 09428 | 09408 | 0.2802 | 03719 | 0.4204 | 0.4674 | 0.5603
30 | 09288 (09288 | 0.9275 0.9289 [ 0.9278 | 0.9288 | 0.9288 | 0.9275 | 0.9289 | 0.9273
Ls= 30 | 09345 09363 | 0.9345 0.9370 [ 0.9338 | 0.9346 | 09363 | 0.9343 | 0.9370 | 0.9338
75 | 09417 (09405 | 0.9303 09404 | 09399 [ 0.9417 | 0.9405 | 0.9393 | 0.9404 | 0.9399
100 | 0.0402 | 09425 | 0.9432 0.0431 [ 0.9415 | 0.9402 | 0.9425 | 0.9432 | 0.0431 | 0.9415
30 (0932209322 | 09291 0.9333 [ 0.9303 | 0.5158 | 0.6854 | 0.7736 | 0.8612 | 1.0338
ADI* |50 | 009371(09382 | 09357 09379 | 09357 [ 03958 | 0.5269 | 0.3941 | 0.6609 | 0.7929
75 | 09419 [ 09425 | 0.9405 09413 | 09412 [ 03221 | 04283 | 0.4832 | 0.5378 | 0.6436
100 | 0.9404 | 09436 | 0.9437 0.9436 | 0.9419 | 0.2787 | 03699 | 04181 | 0.4648 | 0.5572
30 | 09388 09385 | 0.9332 0.9397 | 0.9365 | 0.5287 | 0.7024 | 0.7929 | 0.8826 | 1.0595
ADJ 30 | 09402 (09413 | 09380 0.9407 [ 0.9390 | 0.4016 | 0.5346 | 0.6029 | 0.6703 | 0.8047
75| 09442 [ 09443 | 09424 0.9437 | 0.0435 | 0.3251 | 04323 | 04878 | 0.5420 | 0.6496
100 | 0.9423 | 09449 | 0.9435 0.9447 | 0.9435 | 0.2807 | 03725 | 0.4211 | 0.4682 | 0.3612
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Table 3.4: Coverage probability and average length for Gamma (4,2) simulations.

Coverage Probability Average Length
Method [0\Cp |1 133 15 167 |2 1 133 15 167 |2
30 [0881 (0878 0.879 0877 (0879 0534 |0711 |0802 |0.892)|1.067
EXACT (50 |0873|0875 0873 0872 | 0872 | 0406 | 0538 |0608 |0.676|0.810
75 [ 0.869 [ 0.870 0.870 0.867 |0.868 | 0327 | 0435 |0491 |0.546 | 0.654
100 | 0.869 | 0.868 0.868 0.867 |0.867 | 0.282 | 0375 [0423 | 0470 | 0.563
30 (0548 [ 0540 0.548 0547 (0544 | 0424 (0564 | 0636 |0.708 | 0.847
TRUNC |50 | 03509 | 0.506 0.507 0505 | 0509 | 0335 | 0444 | 0302 | 0.558 | 0.660
5% 75 | 0404 | 0403 0402 0400 | 0400 | 0272 (0362 |0408 | 0454 (0544
100 | 0487 | 0482 0.486 0484 | 0482 | 0245 | 0325 |0367 | 0409|0489
30 [ 0850 0850 0.850 0848 (02851 |0544 (0724 | 0817 | 0910 1.087
TRUNC |50 |0838 0841 0.839 0840 | 0.840 | 0419 | 0556 | 0627 |0.698 | 0.837
10% 75 | 0848 | 0.846 0.847 0845 | 0848 | 0332 | 0442 | 0498 | 0.555 | 0.665
100 | 0.807 | 0.810 0.805 0810 | 0810 | 0294 | 0391 |0442 | 0491 |0.588
30 [ 0901 | 0897 0.896 0897 |0.899 |0.647 | 0860 |0968 | 1.079|1.280
ALS 50 [ 0905 [ 0.906 0.905 0905 (0905 | 0493 | 0656 |0741 |0.825) 00987
75 | 0911|0913 0912 0909 | 0912 | 0404 | 0536 |0604 | 0673 |0.806
100 | 0917|0917 0916 0916 | 0917 | 0350 | 0465 |[0526 | 0584 |0.701
30 (0923 (0920 0919 0920 | 0922 | 0742 | 0987 |1110 | 1239|1482
ALS* 50 [ 09300934 0.932 0931 [ 0931 |0.559 | 0743 | 0839 0934|1118
75 | 0940 | 0.943 0.940 0938 (0940 0435 |0604 |0681 |0.758 00900
100 | 0.947 | 0.945 0.944 0946 | 0945 | 0394 | 0522 |0391 | 0.657 |0.789
30 [0.888 (0884 0.882 0884 | 0886 | 0609 | 0810 |0912 | 1017|1216
LS 50 | 0897|0901 0.901 0899 | 0900 | 0478 | 0635 |0717 |0.798 | 0.956
75 | 0810|0811 0.910 0907 | 0911 | 0397 (0527 [03594 |0.661|0.793
100 | 0918 | 0917 0.915 0916 | 0917 | 0347 | 0460 |0321 |0.579 | 0.694
30 [ 0806|0902 0.901 0902 | 0905 | 0906 (0902 |00901 |0.902 0905
Ls* 50 | 0920|0923 0922 0920 | 0920 | 0920 | 0923 |0922 | 0920|0920
75 [ 0932|0935 0.932 0930 | 0933 | 0932 | 0935 |[0932 |0.930 0933
100 | 0.940 | 0.940 0.938 0940 | 0940 | 0940 | 0940 | 0938 | 0.940 | 0.940
30 | 0.895 | 0.893 0.891 0892 |0.894 |0.594 (0790 |0890 |0.992[1.186
ADJ* 50 [ 0.906 | 0907 0.907 0906 | 0906 | 0472 | 0627 |0.708 |0.788 | 0.944
75 [ 0914|0917 0.915 0913 | 0916 | 0393 | 0523 |0380 | 0.656|0.786
100 | 0922|0922 0.920 0920 | 0922 | 0345 | 0458 | 03518 |0.575 | 0.690
30 (0911|0910 0.908 0909 | 0910 | 0635 |0.844 |00950 | 1.060 | 1.267
ADJ 50 [ 0819|0821 0.920 0920 [0920 | 0503 (0668 |0755 |0.840 ) 1.006
75 [ 0928 [ 0930 0927 0926 | 0928 | 0419 | 055 | 0627 |0.698 | 0.837
100 | 0933|0932 0.932 0932 | 0933 | 0367 | 0487 |0351 |0.612|0.734
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Table 3.5: Coverage probability and average length for Gamma (0.75, .867)

simulations.
Coverage Probability Average Length
Method |no'Cp | 1 1.33 15 167 |2 1 133 1.5 167 |2
30 | 0.667 | D.666 0.663 0.667 | 0.665 | 0.571 | 0.762 0858 | 0934|1144
EXACT |50 | 06534 | 0,652 0.649 0.655 | 0.655 | 0423 | 0.563 0633 | 0.705 | 0.845
75 | 0.646 | 0.645 0.643 0.640 | 0.644 | 0337 | 0.440 0.505 | 0.563 | 0.674
100 | 0637 | 0.643 0.635 0,637 | 0.640| 0288 | 0384 0433 | 0481|0577
30 0629|0435 0.633 0630 | 0.632] 0433 | 0.644 0.726 | 0.807 | 0967
TRUNC | 50 | 0.6533 | 0.654 0.655 0.651 | 0.651 | 0381 | 0.506 0.570 | 0.635) 0.760
5% 75 | 0.646 | 0645 0.646 0.642 | 0.641 | 0308 | 0410 0462 | 0.514 | 0616
100 | 0.687 | 0,690 0.686 0.686 | 0.688 | 0280 | 0372 0421 | 0468 | 0561
30 | 0585 (0534 0.586 0.590 | 0.587 | 0,660 | 0.850 0992 | 1.103 | 1323
TRUNC |50 | 0.485 | 0.436 0.434 0.439 | 0491 | 0504 | 0.670 0,754 | 0.839) 1.007
10% 75 | 0.444 | 0.440 0.440 0.440 | 0.444 | 0397 | 0.527 0.595 | 0.662 | 0.793
100 | 0297 0297 0.292 0296 | 0295 0352 | 0.458 0520 | 0.585 | 0.704
30 | 0863 [ 0864 0.863 0866 | 0865 | 1.112 | 1477 1.670 [ 1855|2217
ATS 50 | 0.589 | 0.850 0.538 0.839 | 0.892| 0.833 | 1.105 1.252 [1.393 ) 1.663
75 | 0903 [ 0.904 0.906 0903 | 0904 | 0672 | 0.804 1.011 [ 1.122] 13456
100 | 0909 | 0913 0.909 0911 | 0912 0578 | 0.769 0869 | 0969|1161
30 | 0937|0938 0.937 0939 | 0930|1717 | 2278 1577 | 2874 | 53419
ATs* |50 | 0957 0.950 0.958 0959 0960 | 1.162 | 1.540 1.747 | 1.945] 2321
75 | 0967 | 0.967 0963 0968 | 0966 | 0.806 | 1.102 1348 [ 1.497)1.795
100 [09871] 0971 0.970 0971 | 0970 | 0.754 | 1.002 1.132 [ 1262] 1512
3 0.809 | 0.807 0.308 0.811 | 0.200| 0880 1.183 1335 [1.485)1.778
LS 50 | 0845|0845 0.842 0843 | 0.245| 0.719 | 0956 1077 [ 1.200] 1436
75 | 0.866 | 0.865 0.368 0866 | 0.264 | 0,608 | 0.808 0913 | 1.015]1.217
100 | 0877|0879 0875 0.879 | 0.880 | 0538 | 0.716 0800 | 0901|1079
3 0.803 | 0.803 0.394 0.806 | 0.805| 0.893 | 0.893 0.804 | 0.805 | 0.895
L5* 500 0924|0926 0924 0924 10926 | 0924 | 0926 0924 | 0924|0926
75 10940 | 0941 0.943 0.941 | 0939 0.940) 0941 0943 | 0.941 | 0930
100 | 0948 | 0.950 0.948 0950 | 0.950 | 0.948 | 0.950 0948 | 0930 | 0950
30 | 0833|0832 0.320 0.825 | 0838 0850) 1.141 1208 [1.440)1.730
ADJ* 50 | 0861 (0854 0.856 0.857 | 0.859 | 0.700 | 0.930 1.047 [ 1.175] 1.407
75 | 0875|0873 0.878 0.873 | 0.882 | 0.599 | 0.797 0803 | 1.001|1.196
100 | 0.893 | 0886 0.887 0.887 | 0.882| 0.534 | 0.708 0.793 | 0.801 | 1.061
30 |0873| 0879 03874 0.870 | 0.876| 0914 | 1225 1302 [ 1544|1856
ADJ 50 | 0891|0882 0.339 0888 | 0.892] 0737|0979 1104 [1.237] 1481
75 | 0902|0902 0901 0.808 | 0.909 | 0,622 | 0.828 0920 | 1.039|1244
100 | 0914 | 0911 0.906 0.910 | 0.906 | 0.550 | 0.730 0818 | 0918|1094
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Table 3.6: Coverage probability and average length for Gamma (0.25, .5)

simulations.
Coverage Probability Average Length
Method |o'Cp [ 1 1.33 15 167 |2 1 1.33 1.5 167 |2
3 0.460 | 0.455 0.454 0.435 | 0456 | 0.666 | 0.892 1.002 | 1.116]1.333
EXACT |50 | 0445|0448 0.450 0443 | 0445 | 0465 | 0.620 0.699 | 0.776 | 0.931
73 0442 | 0437 0.444 0436 | 0442 | 0360 [ 0479 0.539 | 0602 | 0.719
100 | 0435 ) 0.436 0.436 0434 | 0434 | 0303 [ 0.403 0.455 | 0507 | 0.608
3 0476 | 0473 0.472 0476 0474 | 0.649 [ 0.867 0975 | 1.086)1.299
TREUNC | 50 | 0437|0437 0.436 0440 | 0436 | 0.502 | 0.670 0.755 | 0.839 | 1.005
5% 73 0.405 | 0.404 0.406 0.403 | 0405 | 0401 | 0.534 0.601 | 0.670 | 0.801
100 (0271|0272 0.275 0.266 | 0268 | 0.375 [ 0.498 0.562 | 0.626 | 0.751
3 0.205 ) 0.203 0.203 0202 | 0206 | 1.084 [ 1.445 1.632 | 1.813 ] 2.167
TEUNC | 50 | 0.096 | 0.095 0.087 0.099 | 0.097 | 0.792 | 1.038 1.192 | 1.325 | 1.587
10% 73 0.034 | 0.055 0.056 0.035 | 0.055 | 0.605 | 0.804 0905 |1011)1208
100 | 0.014 | 0.015 0.015 0.016 | 0.014 | 0.542 | 0.721 0.813 | 0905 | 1.085
3 0.857 | 0.856 0.857 0.839 | 0.860 | 2577 [ 3436 3876 | 4321|5177
ATS 50 | 0883|084 0.884 0.884 | 0D.882 | 1.733 [ 2316 2609 | 2910 | 3470
73 0.897 | 0.897 0.898 0.898 | 0900 | 1.320 [ 1.763 1977 2214|2642
100 | 0.906 | 0.904 0.906 0.906 | 0904 | 1.109 [ 1.466 1.651 | 1.840]2.213
3 0972 | 0972 0.971 0971|0974 | 5082 | 6.794 7.656 | 8.566 | 10.235
ALS* 50 | 0.980 | 0.980 0.980 0980 | 0979 | 2575 [3.443 3.877 | 43305139
73 0.983 | 0.982 0.983 0982 | 0983 | 1.749 [ 2.339 2623 | 2938 | 3.502
100 | 0.983 | 0.983 0.983 0984 | 09821396 | 1.846 2079 | 2319|2788
3 0.742 | 0.737 0.739 0741 | 0.743 | 1.400 | 1.871 2106 | 2344 | 2.804
LS 50 | 0.787 | 0.790 0.790 0.791 | 0.788 | 1.096 [ 1.465 1.650 | 1.834 | 2.193
75 0.822 | 0.822 0.823 0.820 | 0.822 | 0920 [ 1.225 1.378 | 1.540 ] 1.839
100 | 0.830 | 0.841 0.840 0.837 | 0838 | 0.817 | 1.082 1.220 | 1.360 | 1.633
30 | 0.870) 0.868 0.867 0.870 | 0.870 | 0.870 [ 0.868 0.867 | 0.870 | 0.870
Ls* 50 | 0.905 | 0.906 0.906 0.905 | 0.905 | 0.005 | 0.906 0906 | 0905 | 0.905
75 0.926 | 0.927 0.927 0.925 | 0927 | 0926 | 0.927 0927 | 0925|0927
100 | 0.938 | 0.934 0.936 0.938 | 0935 | 0.938 | 09345 0935 | 0938|0935
30 | 0785|0782 0.782 0784 | 0786 | 1312 [ 1.754 1973 | 2196 | 2.627
ADT* 50 | 0.819 | 0.822 0.820 0.820 | 0.817 | 1.042 | 1.303 1.568 | 1.743 | 2.085
75 0.844 | 0.843 0.845 0843 | 0844 | 0883 [ 1.176 1323 | 1478 | 1.765
100 | 0.839 | 0.858 0.859 0838 | 0856 | 0.78% | 1.046 1.179 | 1314 | 1.577
30 | 0.833| 0833 0.830 0.834 | 0834 | 1305 [ 1.744 1963 | 2184 | 2612
ADJ 50 | 0.851 | 0.855 0.853 0,852 | 0840 | 1.010 [ 1.348 1.519 | 1.688 | 2.020
73 0.863 | 0.864 0.864 0.864 | 0.865 | 0.842 [ 1.121 1.261 | 1408 | 1.682
100 | 0875|0872 0872 0.873 | 0.871 | 0.745 | 0.988 1.113 | 1241 | 1.490
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Figure 3.1: Estimated coverage probabilities of 95% confidence intervals for
different n (50, 100) and Cp for N (50,1) distribution. Note that A=ALS,
B=ALS*, C=LS, D=LS*, E=ADJ, F=ADJ*, G=Trunc (10%), H=exact
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It is clear from Figure 3.1 that the exact CI is the best of all for normal
distributions while the variance methods are roughly similarly well. The truncated
Clis not as good as the other methods.
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Figure3.2: Estimated coverage probabilities of 95% confidence intervals for
different n (50, 100) and Cp for Gamma (0.25, 0.5) distribution. Note that
A=ALS, B=ALS*, C=LS, D=LS*, E=ADJ, F=ADJ*, G=Trunc (10%), H=exact
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From Figure 3.2, we can see that for skewed distributions, ALS* performing the
best followed by LS*, ADJ* ALS, LS and ADJ and then Exact and robust
truncated Cls.
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Figure 3.3: Estimated average widths of 95% confidence intervals for different n
(50, 100) and Cp for N(50, 1) distribution. Note that A=ALS, B=ALS*, C=LS,
D=LS*, E=ADJ, F=ADJ*,G=Trunc (10%), H=exact.
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It is clear from Figure 3.3 that for normal case, the expected length are roughly the
same for all methods. The higher the Cp value, the higher the lengths.

n=30,Gamma(0.25,0.5)+49.5

Expected_Length

CP value

n=100,Gamma(0.25,0.5)+49.5

Expected_Length

CP value

Figure 3.4: Estimated average widths of 95% confidence intervals for different n
(50, 100) and Cp for Gamma(0.25, 0.50) distribution. Note that A=ALS, B=ALS*,
C=LS, D=LS*, E=ADJ, F=ADJ*, G=Trunc (10%), H=exact.
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It is clear from Figure 3.4 that the proposed ALS*, LS* and ADJ* Cls generally
have reasonably larger length than the rest of the methods while the robust
truncated CI and exact CI have the shortest length.

Applications

To illustrate the findings of the paper, we will analyze two real life data in this
section.

4.1. Weight of the rubber edge data

In this example, we consider the weight of the rubber edge data (in gm), which is
an important component that reflect the sound quality of the drive unit. The data
in Table 4.1 was analyzed by Rezaie et al. (2006) and Abu-Shawiesh (2020)
among others.

Table 4.1: Weight of the rubber edge data

8.63 | 865 |857 |857 |854 |869 |863 |864 |859 |861
8.6 8.66 |8.65 |85 8.61 | 861 |863 |867 |854 |8.62
8.65 | 858 |865 |867 |867 |865 |869 |866 |862 |8.63
859 | 865 |864 |864 |852 |869 |866 |866 |861 |855
857 | 864 |863 857 |861 |859 |85 |871 |853 |851
872 | 858 |864 |869 |864 |875 |859 |861 |858 |8.65
8.73 | 8.7 8.65 | 856 |866 |865 |866 |868 |862 |854
8.67 | 862 |854 |862 |866 |85 |86 8.62 |8.61 | 8.66

Some descriptive statistics for weight measurements of rubber edge data are
presented in Table 4.2.

Table 4.2: Descriptive Statistics of the rubber edge data

Statistics Value
Sample mean 8.623
Sample median  8.630
Sample SD 0.052
Skewness -0.194
Modified SD 0.060
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Figure 4.1: Histogram of the rubber edge data

The histogram of the data is provided in Figure 4.1. Shapiro test gives p-value
0.4657, which is more than 0.05. Both histogram and p-value indicated that the
data are from a normal population. We will consider the lower and upper
specification limits are 8.30 and 8.90 respectively. If the data falls outside of the
specification limits will be considered as unacceptable. The 95% Cls for the
weight measurements of rubber edge data for the exact and all proposed methods
are computed and reported in Table 4.3.

Table 4.3: The 95% confidence intervals and widths for the rubber edge data

Methods PCI LCL UCL Width
Exact 191 1.62 2.21 0.60
ALS 191 1.63 2.19 0.57
ALS* 1.91 1.64 2.18 0.54

LS 1.94 1.65 2.22 0.57

LS* 1.92 1.65 2.19 0.54

ADJ 1.91 1.63 2.20 0.57
ADJ* 1.90 1.61 2.19 0.58
Truncate (10%) 1.93 1.63 2.24 0.60
Truncate (5%) 1.62 1.36 1.87 0.50

We can see from the Table 4.3 that the point estimate of Cp of the estimators,
ADJ, ADJ*, LS, LS*, ALS and ALS* and 10% Truncated method all have values
close to the exact Cp value of 1.91. However, 5% Truncated method has lower Cp
value than the exact method. The width of the proposed intervals are shorter than
the rest of the interval but the 5% Truncated method. Looking at these values
basically support our simulation study results.
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4.2. Polarizer manufacturing process data

The single hue value b (measured in NBS) is an important quality characteristic in
the polarizer manufacturing process. To monitor the performance of this process,
25, each of sample size 2, were taken when the process is in control (Li et al.
(2014). The resulting data are shown in Table 4.4 and summary statistics of the
data are given in Table 4.5.

Table 4.4: Polarizer manufacturing process data

# X # X # X # X # X

1 4.41.4.41 6 4.62.4.38 11 4.504.41 16  4.50.4.47 21 4.60,4.50
2 442447 7 4.35,4.43 12 4.39.4.54 17 4.56.4.44 22 4.45,4.55
3 4.38,4.40 8 4.61.4.51 13 4.43.4.45 18 4.42.4.40 23 4.61,4.33
4 4.47.4.47 9 4.41.4.60 14 4.43.4.44 19 444446 24 4.40.4.38
5 4.51.4.48 10 4.44.4.38 15 4.47.4.46 20 4.44.4.52 25 4.37.4.50

Table 4.5: Descriptive Statistics
Statistics Value
Sample mean 4.460
Sample median  4.445
Sample SD 0.071
Skewness 0.641
Modified SD 0.109

15
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polarizer manufacturing process

Figure 4.2: Histogram of the Polarizer manufacturing process data

The p-value for Shapiro test is 0.0282, which indicated data are not from a normal
population. The histogram in Figure 4.2 clearly showed that data are from a right
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skewed distribution. We consider USL=4.7 and LSL=4.1 and the 95% ClIs for the
polarizer manufacturing process data for the exact and all proposed methods are
computed and reported in Table 4.6.

Table 4.6: The 95% confidence intervals and widths for the rubber edge data

Methods PCI LCL UCL Width
Exact 141 1.13 1.69 0.56
ALS 1.39 1.12 1.66 0.54
ALS* 1.39 1.12 1.67 0.55

LS 144 1.16 1.71 0.55

LS* 1.40 1.13 1.68 0.55

ADJ 141 1.14 1.68 0.55
ADJ* 1.38 1.07 1.68 0.61
Truncate (10%) 144 1.16 1.72 0.57
Truncate (5%) 1.10 0.88 1.32 0.43

From Table 4.6 it appears that the widths of all estimators except 5% truncated
interval and ADJ* are very close to each other’s.

5. Some Concluding Remarks

This paper studied eight confidence intervals for estimating the process capability
index Cp and three of them, namely ALS*, LS* and ADJ* are proposed based on
the modified standard deviation. A simulation study has been conducted to
compare the performance of the interval estimators under both normal and
nonnormal distributions. Both coverage probability and average width were
considered as a performance criterion. Our proposed interval estimators performed
better in the sense of high coverage probability and average width for skewed
distribution. ~ While the exact method performed the best under normal
distribution. Two real-world data are analyzed which supported the simulation
study to some extent.
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