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Abstract 

In this paper, we proposed some modified interval estimators, namely the modified 

adjusted degrees of freedom (ADJ*), modified large-sample (LS*), and the augmented-

large-sample (ALS*) confidence intervals for estimating the population process capability 

index, Cp. A simulation study has been conducted to compare the performance of the 

proposed interval estimators with the existing Exact, ADJ, LS, ALS and the modified 

trimmed standard deviation confidence intervals. We consider both simulated coverage 

probability and average width as a performance criterion. Simulation results evident that 

the exact method performed the best under normal distribution, while the proposed 

confidence intervals performed well for most of cases for skewed distribution. For 

illustration purposes, two real-life data from industry are analyzed which supported the 

simulation results to some degree. The proposed methods can be recommended to be used 

by the practitioners in various fields of production and engineering. 

Keywords: Average Width, Confidence Interval, Coverage Probability, Process 

Capability Index; Robust Estimator and Simulation study. 
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0. Tribute to Sinha Brothers 

It is my great honor and privilege to contribute this article in the special issue of 

International Journal of Statistical Sciences (IJSS) in honor of the twin 

statisticians, Professor Bikas K. Sinha and Professor Bimal K. Sinha. Due to their 
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outstanding and invaluable contributions in statistics, both are very well known 

and respected statisticians in the world. I used to call them as ―Bikas Da‖ and 

―Bimal Da’ for about twenty years. I meet first, when both have visited my 

department, Department of Statistics at Florida International University as invited 

speakers occasionally between 2004 to 2006. I was also fortunate to visit Bikas Da 

at the Indian Statistical Institute, Calcutta, India in 2006. Their love, moral 

support, and positive attitude towards my profession have been highly 

inspirational to me. I am thankful to the Department of Statistics, Rajshahi 

University for giving me the opportunity to publish this article in IJSS in honor of 

Bikas Da and Bimal Da. I wish them a long life filled with happiness and good 

health. 
 

1. Introduction 

The process capability analysis (PCA) is a set of calculations used to test whether 

the evaluation meets the specification requirements Process Capability Index 

(PCI) is a simple measure producer’s capability to produce a product within the 

customer’s tolerance range. The process capability index (PCI) is defined as the 

quotient between the length of the acceptance interval and six times the standard 

deviation obtained as a result of the design and production processes.  The process 

capability index (also called Cp) tells us whether the result is between the 

specification limits (Maiti and Saha, 2012). A higher Cp value indicates a better 

the process. First, we need to set up a lower specification limit (LSL) and upper 

specification limit (USL) for the process given according to some specifications 

defined by some predefined standards not relating to the nature of the process 

itself. 

Let us assume that the quality characteristic of interest follows a normal 

distribution with mean (µ) and standard deviation (σ). A capable process will have 

almost all the measurements being within the specification limits. Therefore, the 

quality characteristic outside the LSL and USL is to be considered as 

nonconforming. The population process capability index (Cp) is defined as a ratio 

in equation (1.1), where we would like to know the how much wider is the range 

of LSL to USL than the six-Sigma range where 99.73% of the items will fall 

within statistically. The higher the ratio of specification width (USL-LSL) over 

the process spread (6σ), the higher capability of the process to produce fewer non-
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conforming products. The population process capability index can be defined as 

follows: 

                                                  
       

  
                                                        (1.1) 

where USL= upper specification limit and LSL=lower specification limit and σ is 

the process standard deviation. As we know when the Cp value is higher than 1, 

the process is considered capable while the opposite being not capable or poor in 

terms of quality measure. A Cp value higher than 1.67 is considered as an 

indicator of an excellent process and so on.  In the real-world processes, we can 

replace σ with the sample standard deviation S to get a point estimation of the Cp. 

Moreover, A more useful interval estimate of the Cp, the confidence intervals are 

usually computed too which is called the exact CI of Cp. More on capability 

indices under both normal and non-normal distributions, we refer to Kane (1986), 

Pearn et al. (1992, 1994, 1995),  Kotz and Lovelace (1998), Yeh and Bhattacharya 

(1998) and very recently Abu-Shawiesh et al (2020),  among others.  

The population Cp heavily depends on the assumption that the quality 

characteristic measurements are independent and normally distributed. However, 

there are many situations of violations of these assumptions and therefore the 

exact confidence interval (CI) for the process capability index (Cp) may not be 

accurate. Many authors proposed robust method which is better than the exact 

confidence interval (CI) in these situations. Panichkitkosolkul (2016) considered 

revisions of the confidence intervals of the variance term under non-normality and 

proposed several robust CIs for Cp.  Abu-Shawiesh et al, (2020) proposed a robust 

confidence interval for the process capability index (Cp) by means of a robust 

modified trimmed standard deviation (𝑀𝑇𝑆𝐷=𝑆𝑇∗).  Based on these literatures, 

especially Abu-Shawiesh et al,. (2020)  and  Panichkitkosolkul (2016), we 

proposed modified confidence intervals by replacing the sample mean with the 

sample median in confidence intervals in Abu-Shawiesh et al (2020).   

The rest of the paper is organized as follows: In section 2, we present some 

existing and proposed confidence intervals. A simulation study has been 

conducted in section 3.  As applications, two real life data are analyzed in section 

4. Finally, some concluding remarks are outlined in section 5. 
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2. Statistical Methodology 

In this section, we will discuss about some confidence interval estimators. Since, 

in real life, most of the data do not follow the normality assumptions, we will 

consider some interval estimators for Cp when the data do not follow the 

normality assumption.  
 

2.1. The Exact Confidence Interval  

Suppose X represents the quality characteristics under study. Let X1, X2, …, Xn be 

a random sample of size n drawn from a normal population with mean µ and 

standard deviation σ. If the process standard deviation is unknown, it can be 

estimate from the sample standard deviations, s 

The exact (1-α)100% confidence interval (CI) for the population process 

capability index, Cp is obtained as follows:  
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√
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2.2. The Robust Confidence Interval  

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample of size 𝑛 from a normal distribution with 

process mean 𝜇 and process standard deviation  𝜎. The r-times symmetrically 

trimmed random sample is obtained by dropping both lowest and highest r values 

from both end, using the following formula:   

                                              ̅  
 

    
∑     

   
                                                 (2.2) 

where r=[αn] represents the greatest integer and trimming is done for α% ( 0 ≤ α 

≤0.5) of the sample size n. The sample standard deviation can be calculated as 

follows.  

                                           √∑ (      ̅ )
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Then the confidence intervals can be computed using Equations (2.1) and (2.3) 

with S replace by ST* in (2.4). 

                                𝜎 ̂  𝑀𝑇𝑆𝐷  𝑆 
∗                                                        (2.4) 

 Following, Abu-Shawiesh et al. (2020), the robust (1-α)100% confidence interval 

(CI) for the population process capability index, Cp is obtained as follows  
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  are the α/2 and 1-α/2 quantiles of 

the Chi-square distribution with n-1 degrees of freedom (DF).  For more on robust 

confidence interval, we refer Yeh and Bhattacharya (1998) and Abu-Shawiesh et 

al. (2020) among others. 
 

2.3. Confidence Intervals for Cp under Non-normality  

Originally, the confidence intervals for the variance under non-normality was 

proposed by Hummel and Hettmansperger (2004) and Burch (2014) and are 

further described in detail in Abu-Shawiesh et al. (2020).  In non-normal 

situations, the coverage probability of the confidence interval can be considerably 

below 1−α.  Hummel and Hettmansperger (2004) presented a confidence interval 

for population variance by adjusting the degrees of freedom of chi-square 

distribution. Panichkitkosolkul (2020) proposed three confidence intervals for the 

process capability index Cp based on the confidence intervals for the variance 

proposed by Hummel and Hettmansperger (2004) and Burch (2014)  and provided 

them in the following subsections. 
 

2.3.1. The Adjusted Degrees of Freedom Confidence Interval (ADJ) 

The (1 − α)100% confidence interval for the Cp based on the confidence interval 

for  𝜎  by adjusting the degrees of freedom of chi-square distribution is given by     
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)                                                 (2.6) 

where the adjusting the degree of freedom of chi-squared distribution is given by 



 

 

 

 

 

 

 

150                                     International Journal of Statistical Sciences, Vol. 21(2), 2021 

 

  ̂  
 𝑛

 ̂   𝑛  𝑛    
 

and 

 ̂  
𝑛 𝑛    

 𝑛     𝑛     𝑛    

∑  𝑋  �̅�   
   

𝑆 
 

  𝑛     

 𝑛     𝑛    
   

 

2.3.2. Large-Sample Confidence Interval for the Variance (LS) 

The (1 − α)100% confidence interval for the Cp based on the large-sample 

confidence interval for 𝜎  is given by 
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2.3.3. Augmented-Large-Sample Confidence Interval for the Variance (ALS) 

The (1 − α)100% confidence interval for the Cp based on the augmented-large-

sample confidence interval for 𝜎  is given by     
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2.4. Modification of ADJ, LS and ALS confidence intervals 

Motived by the robust truncated confidence interval in section 2.2, we would like 

to use the sample median which is more resistant to outliers and skewed 

distribution, to define the sample standard deviation. Combined with the proposed 
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methods in 2.3, we will propose three new confidence intervals by 

modifying Equations (2.6), (2.7) and (2.8)  just by replacing each S by S* 

 

                                    𝑆∗  √
∑          

   

   
                                                         (2.9) 

where Md= median of the observations, X1, X2,…., Xn 
 

2.4.1. Modified Adjusted Degrees of Freedom Confidence Interval (ADJ) 

The (1 − α)100% confidence interval for the Cp based on the confidence interval 

for  𝜎  by adjusting the degrees of freedom of chi-square distribution is given by 

             ∗  (
       

  ∗
√

     ̂⁄

 ̂
 
       

  ∗
√

        ̂
 

 ̂
)                                         (2.10) 

where the adjusting the degree of freedom of chi-squared distribution is given by 
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2.4.2. Modified large-Sample Confidence Interval for the Variance (LS) 

The (1 − α)100% confidence interval for the Cp based on the large-sample 

confidence interval for 𝜎  is given by 
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2.4.3. Modified Augmented-Large-Sample Confidence Interval for the 

Variance (ALS) 

The (1 − α)100% confidence interval for the Cp based on the augmented-large-

sample confidence interval for 𝜎  is given by       

     ∗  (
       

  ∗
√     
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  ∗
√      

  
 
 
√ ∗  ∗ 

)                                   (2.12) 

where  B*     ̂      ∗   , C*=
 ̂            
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)  ∗ (  
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) 

and  ∗  is defined in equation (2.9).  
 

3. Simulation Study  

Since a theoretical comparison among the interval estimators is difficult, a 

simulation study is conducted in this section. Statistical software R 4.1.1 is used to 

compare the performances of the proposed intervals for the following normal and 

non-normal distributions: (i) N (50, 1) (ii) Gamma (4, 2); (iii) Gamma (0.75, 

0.867) and (iv) Gamma (0.25, 0.50) distributions. The number of simulation 

replications was 50000 for each case. Random samples were generated from each 

of the above mentioned distributions with Cp =1.0 and samples sizes n=10, 25, 50 

and 100. Coverage probability (CP) and average width (AW) of selected CIs were 

measured for each case. The most common 95% confidence interval (=0.05) is 

used for measuring confidence level. When (=0.05), an interval has perfect 

performance in terms of CP that will capture the true Cp between the lower and 

upper limits 95% of the time. The estimated CP and AW for this simulation study 

are given respectively by:  

                  ̂  
         

 
  and   ̂  

∑        
 
   

 
 ,                                               (3.1) 

where )(# UCpL   denotes the number of simulation runs for which Cp lies 

within confidence interval.  We generated the following distributions in Table 3.1 

for simulation comparisons. The true values of the process capability index Cp, 

LSL and USL are set in the Table 3.2.  
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Table 3.1: Probability distributions and the coefficient of skewness for Monte 

Carlo simulation. 

 
 

Table 3.2: True values of Cp, LSL and USL. 

 

The sample sizes were set at n=30,50,75 and 100 and the number of simulation 

trials was 50,000. The nominal level was fixed at 0.95.  The simulated CPs and 

AWs for each of the distributions described above are presented in Tables 3.3-3.4 

for N(50,1), Gamma (4,2), Gamma(0.75, 0.867) and Gamma (0.25, 0.5) 

respectively. For clear understanding, CPs and AWs for considered n are 

presented in Figures 3.1-3.4 respectively. From these Tables we may observe that 

when data are generating from N(50,1) distribution, the exact method has 

estimated coverage probabilities close to nominal level 0.95 for all sample sizes. 

However, the proposed methods ALS*, LS* and ADJ* are performing better than 

the corresponding existing methods   ALS, LS and ADJ in the sense of higher 

coverage probabilities.  Robust method performed the worse is left for the further 

study. The expected length for all methods do not differ significantly. However, 

Robust methods have the shortest length, while LS* method has the widest length. 

It may be noted that when sample sizes increase the expected length decreases for 

all methods. When the data are generated from skewed distributions (Gamma), the 

proposed methods ALS*, LS* and ADJ* are performing better than the rest of the 

intervals in the sense of high coverage probablities.  Both exact and robust 

methods performed poorly that need for further study. 
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Table 3.3: Coverage probability and average length for N(50,1) simulations. 
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Table 3.4: Coverage probability and average length for Gamma (4,2) simulations. 
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Table 3.5: Coverage probability and average length for Gamma (0.75, .867) 

simulations. 
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Table 3.6: Coverage probability and average length for Gamma (0.25, .5) 

simulations. 
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Figure 3.1: Estimated coverage probabilities of 95% confidence intervals for 

different n (50, 100) and Cp for N (50,1) distribution. Note that A=ALS, 

B=ALS*, C=LS, D=LS*, E=ADJ, F=ADJ*, G=Trunc (10%), H=exact 
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It is clear from Figure 3.1 that the exact CI is the best of all for normal 

distributions while the variance methods are roughly similarly well. The truncated 

CI is not as good as the other methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure3.2: Estimated coverage probabilities of 95% confidence intervals for 

different n (50, 100) and Cp for Gamma (0.25, 0.5) distribution. Note that 

A=ALS, B=ALS*, C=LS, D=LS*, E=ADJ, F=ADJ*, G=Trunc (10%), H=exact 
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From Figure 3.2, we can see that for skewed distributions, ALS* performing the 

best followed by LS*, ADJ* ALS, LS and ADJ and then Exact and robust 

truncated CIs.  

 

 

 

 

 

 

 

 

 

Figure 3.3: Estimated average widths of 95% confidence intervals for different n 

(50, 100) and Cp for N(50, 1) distribution. Note that A=ALS, B=ALS*, C=LS, 

D=LS*, E=ADJ, F=ADJ*,G=Trunc (10%), H=exact. 
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It is clear from Figure 3.3 that for normal case, the expected length are roughly the 

same for all methods. The higher the Cp value, the higher the lengths.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Estimated average widths of 95% confidence intervals for different n 

(50, 100) and Cp for Gamma(0.25, 0.50) distribution. Note that A=ALS, B=ALS*, 

C=LS, D=LS*, E=ADJ, F=ADJ*, G=Trunc (10%), H=exact. 
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It is clear from Figure 3.4 that the proposed ALS*, LS* and ADJ* CIs generally 

have reasonably larger length than the rest of the methods while the robust 

truncated CI and exact CI have the shortest length.  
 

Applications 

To illustrate the findings of the paper, we will analyze two real life data in this 

section.  
 

4.1. Weight of the rubber edge data 

In this example, we consider the weight of the rubber edge data (in gm), which is 

an important component that reflect the sound quality of the drive unit. The data 

in Table 4.1 was analyzed by Rezaie et al. (2006) and Abu-Shawiesh (2020) 

among others. 
 

Table 4.1: Weight of the rubber edge data 

8.63 8.65 8.57 8.57 8.54 8.69 8.63 8.64 8.59 8.61 

8.6 8.66 8.65 8.5 8.61 8.61 8.63 8.67 8.54 8.62 

8.65 8.58 8.65 8.67 8.67 8.65 8.69 8.66 8.62 8.63 

8.59 8.65 8.64 8.64 8.52 8.69 8.66 8.66 8.61 8.55 

8.57 8.64 8.63 8.57 8.61 8.59 8.56 8.71 8.53 8.51 

8.72 8.58 8.64 8.69 8.64 8.75 8.59 8.61 8.58 8.65 

8.73 8.7 8.65 8.56 8.66 8.65 8.66 8.68 8.62 8.54 

8.67 8.62 8.54 8.62 8.66 8.56 8.6 8.62 8.61 8.66 
 

Some descriptive statistics for weight measurements of rubber edge data are 

presented in Table 4.2.  

Table 4.2: Descriptive Statistics of the rubber edge data 

Statistics Value 

Sample mean 

Sample median 

Sample SD 

Skewness 

Modified SD 

8.623 

8.630 

0.052 

-0.194 

0.060 
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Figure 4.1: Histogram of the rubber edge data 

The histogram of the data is provided in Figure 4.1. Shapiro test gives p-value 

0.4657, which is more than 0.05. Both histogram and p-value indicated that the 

data are from a normal population.  We will consider the lower and upper 

specification limits are 8.30 and 8.90 respectively. If the data falls outside of the 

specification limits will be considered as unacceptable. The 95% CIs for the 

weight measurements of rubber edge data for the exact and all proposed methods 

are computed and reported in Table 4.3.  
 

Table 4.3: The 95% confidence intervals and widths for the rubber edge data 

Methods  PCI LCL UCL Width 

Exact 1.91 1.62 2.21 0.60 

ALS 1.91 1.63 2.19 0.57 

ALS* 1.91 1.64 2.18 0.54 

LS 1.94 1.65 2.22 0.57 

LS* 1.92 1.65 2.19 0.54 

ADJ 1.91 1.63 2.20 0.57 

ADJ* 1.90 1.61 2.19 0.58 

Truncate (10%) 1.93 1.63 2.24 0.60 

Truncate (5%) 1.62 1.36 1.87 0.50 

We can see from the Table 4.3 that the point estimate of Cp of the estimators, 

ADJ, ADJ*, LS, LS*, ALS and ALS* and 10% Truncated  method all have values 

close to the exact Cp value of 1.91. However, 5% Truncated method has lower Cp 

value than the exact method. The width of the proposed intervals are shorter than 

the rest of the interval but the 5% Truncated method.  Looking at these values 

basically support our simulation study results. 
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4.2. Polarizer manufacturing process data 

The single hue value b (measured in NBS) is an important quality characteristic in 

the polarizer manufacturing process. To monitor the performance of this process, 

25, each of sample size 2, were taken when the process is in control (Li et al. 

(2014). The resulting data are shown in Table 4.4 and summary statistics of the 

data are given in Table 4.5. 

Table 4.4: Polarizer manufacturing process data 

 

                               Table 4.5: Descriptive Statistics 

Statistics Value 

Sample mean 

Sample median 

Sample SD 

Skewness 

Modified SD 

4.460 

4.445 

0.071 

0.641 

0.109 

 

 
Figure 4.2: Histogram of the Polarizer manufacturing process data 

 

The p-value for Shapiro test is 0.0282, which indicated data are not from a normal 

population. The histogram in Figure 4.2 clearly showed that data are from a right 
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skewed distribution. We consider USL=4.7 and LSL=4.1 and the 95% CIs for the 

polarizer manufacturing process data for the exact and all proposed methods are 

computed and reported in Table 4.6.  

Table 4.6: The 95% confidence intervals and widths for the rubber edge data 

Methods PCI LCL UCL Width 

Exact 1.41 1.13 1.69 0.56 

ALS 1.39 1.12 1.66 0.54 

ALS* 1.39 1.12 1.67 0.55 

LS 1.44 1.16 1.71 0.55 

LS* 1.40 1.13 1.68 0.55 

ADJ 1.41 1.14 1.68 0.55 

ADJ* 1.38 1.07 1.68 0.61 

Truncate (10%) 1.44 1.16 1.72 0.57 

Truncate (5%) 1.10 0.88 1.32 0.43 
 

From Table 4.6 it appears that the widths of all estimators except 5% truncated 

interval and ADJ* are very close to each other’s.  
 

5. Some Concluding Remarks 

This paper studied eight confidence intervals for estimating the process capability 

index Cp and three of them, namely ALS*, LS* and ADJ*  are proposed based on 

the modified standard deviation. A simulation study has been conducted to 

compare the performance of the interval estimators under both normal and 

nonnormal distributions. Both coverage probability and average width were 

considered as a performance criterion. Our proposed interval estimators performed 

better in the sense of high coverage probability and average width for skewed 

distribution.  While the exact method performed the best under normal 

distribution. Two real-world data are analyzed which supported the simulation 

study to some extent.  
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