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Abstract 

In this paper we develop Bayesian inference based on singly imputed partially synthetic 

data, when the original data are derived from a multiple linear regression model. We 

assume that the synthetic data are generated by using two methods: plug-in sampling, 

where unknown parameters in the data model are set equal to observed values of their 

point estimators based on the original data, and synthetic data are drawn from this 

estimated version of the model; posterior predictive sampling, where an imputed posterior 

distribution of the unknown parameters is used to generate a posterior draw, which in turn 

is plugged in the original model to beget synthetic data. Simulation results are presented 

to demonstrate how the proposed methodology performs compared to the theoretical 

predictions. We outline some ways to extend the proposed methodology for certain 

scenarios where the required set of conditions do not hold. 

Keywords: Partially synthetic data, Pivotal quantity, Plug-in sampling, Posterior 
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0. Tribute to Professors Bimal and Bikas Sinha 

While I have met and interacted with Professor Bikas Sinha several time, and have 

great respect for his professional contributions, it is Professor Bimal Sinha who I 

have been fortunate to have as my colleague, my friend and my mentor for more 

than twenty years. Over the years I have come to truly appreciate and be inspired 

by his indomitable spirit, his wisdom and his kindness. I feel privileged to 

contribute to this special issue of Statistics and Application honoring Professors 

Bimal and Bikas Sinha.  

I first met Professor Bimal Sinha in 1999 when I joined the statistics program at 

the University of Maryland Baltimore County (UMBC), a program that was 

founded by Professor Sinha or ‘Dr. Sinha’ as many of us call him (fondly). The 

statistics world definitely knows about his inspiring work in multivariate statistics, 

higher order efficiency and in many other topics and recognizes him through 

several influential books that he has authored/co-authored, particularly the ones on 

rank set sampling and statistical meta analysis. He has also made substantial 

contribution to the statistical practices of the U.S federal government. What is 

often missed is his enormous contribution to the profession in leading the UMBC 

statistics program to a successful stand alone program in statistics that has 

nurtured and trained numerous professional statisticians, including myself.  I am 

grateful for his friendship and guidance and look forward to many more years of 

association. I want to take this opportunity to wish him and Professor Bikas Sinha 

on their long productive and successful careers and wish them happy and healthy 

lives.    
 

1. Introduction 

Statistical disclosure control (SDC) methodology aims to suitably modify a 

dataset prior to its release so that the modified dataset does not disclose 

confidential information about the individual units that contributed their 

information to the dataset (for example, survey respondents). At the same time, it 

is also a goal that a dataset that has been modified using SDC methodology would 

still be useful for drawing inference on the relevant population. SDC methods 

include data swapping, additive and multiplicative noise, top and bottom coding, 

and also the creation of synthetic data. The synthetic data approach is a popular 

form of SDC methodology where (all or part of) the real data deemed confidential 

are not released, but are instead used to create synthetic data which are released. 
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Generally, there are two types of synthetic data discussed in the literature: fully 

synthetic data and partially synthetic data, and methodology for drawing inference 

based on synthetic data has been developed using concepts of multiple imputation 

(Rubin, 1987). In fully synthetic data methodology, all units in the population not 

selected in the sample are treated as missing, and are multiply imputed based on 

the information from sampled units, to create multiple synthetic populations. A 

sample is then drawn from each synthetic population, and these samples are 

released to the public. This approach was suggested by Rubin (1993), and 

methods for drawing inference based on the synthetic data generated using this 

approach were developed by Raghunathan et al. (2003). In the partially synthetic 

data approach, the released data comprise only the originally sampled units, but 

any responses deemed to be confidential are replaced by multiple imputations. For 

any particular variable, the responses could be deemed as confidential for some or 

all respondents. This approach was suggested by Little (1993), and methods for 

drawing inference based on synthetic data under this approach were developed by 

Reiter (2003). We refer to the monograph by Drechsler (2011) for a thorough 

discussion on synthetic data methodology. 

In comparison with the standard SDC methods, multiple imputation techniques 

presents many advantages dealing with many real data problems that other 

methods cannot. It preserves the joint distribution of the original data offering a 

better quality analysis; is applicable to both categorical and continuous variables; 

released fully synthetic datasets gives a very small disclosure risk; with partially 

synthetic datasets generation one may only synthesize the records at risk, 

maintaining intact the records that have no need to be protected; it allows the 

possibility to impute missing values before generating synthetic datasets having 

no need to give up on some records; preserves linear constraints; allows the 

analyst to decide if valid results will be given from the synthetic data based on the 

meta-data information. Some drawbacks exist as well. Since it is a perturbation 

method there is a question on the utility limit of the data and only the statistical 

properties gathered by the model are preserved (An and Little, 2007; Drechsler, 

2010). 

There are several examples where partially synthetic data products have been 

produced based on major data sources. Some examples in the United States 

include the Survey of Income and Program Participation (Abowd et al., 2006; 

Benedetto et al., 2013), the American Community Survey Group Quarters data 
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(Hawala, 2008), On The Map data on where workers live and where they work 

(Machanavajjhala et al., 2008), and the Longitudinal Business Database (Kinney 

et al., 2011; Kinney et al., 2014). To obtain valid inference on population 

quantities using synthetic data, the current practice requires multiple synthetic 

datasets to be released, but there are cases where it is prudent to release only a 

single partially synthetic dataset. For example, the Synthetic Longitudinal 

Business Database, accessible through the Virtual RDC at Cornell University, is a 

partially synthetic version of the U.S. Census Bureau’s Longitudinal Business 

Database (LBD). As discussed in Kinney et al. (2011) and Kinney et al. (2014), 

the decision was made to release only a single version of the LBD in the synthetic 

file, instead of multiple copies, to avoid the perception of high disclosure risk. 

Similarly, in the application of partially synthetic data to American Community 

Survey Group Quarters data presented by Hawala (2008), only a single synthetic 

dataset is released, because of the concern that releasing multiple synthetic copies 

may increase disclosure risk. 

The primary purpose of this work is to develop Bayesian analyses for drawing 

inference based on a singly imputed partially synthetic dataset under the multiple 

linear regression (MLR) model. This synthetic data problem fits into the 

framework of partially synthetic data, and hence the methodology of Reiter (2003) 

can be used to obtain approximately valid inference if the sample size is 

sufficiently large and the number of multiply imputed synthetic datasets available 

is m ≥ 10, but it breaks down when m = 1. However, given the specific structure 

in this problem, we shall instead exploit the model structure to derive Bayesian 

inference for the parameters. While the methodology we derive is specific to the 

problem at hand, it yields exact inference for both large and small samples using 

the singly imputed synthetic dataset that is available. We essentially extend the 

work done in Klein and Sinha (2015b) and Klein and Sinha (2015a) that 

developed exact parametric inferential methods based on singly imputed synthetic 

data for the MLR model, to the Bayesian domain. 

Throughout, we would be dealing with the case of a standard MLR model 

involving a sensitive response variable y and a p × 1 dimensional vector of non-

sensitive predictors x. We assume that 

y1, … , yn are independent such that        
                            (1)                 
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where x1,…, xn are fixed p × 1 vectors, and β and σ
2
 are both unknown. Thus the 

original data consist of {(yi; xi) : i = 1,…, n}. We define y = (y1,…, yn)  as the n × 1 

dimensional vector of response variables, and X = [x1 … xn]   as the n × p 

dimensional matrix of predictor variables, and we assume that rank (X) = p < n. 

Based on the original data,  ̂               is the maximum likelihood 

estimator (MLE) and uniformly minimum variance unbiased estimator (UMVUE) 

of β,  ̂            is the UMVUE of σ
2
 where               

               with Ik as k-dimensional identity matrix and    

           is the orthogonal projection matrix to the column space of X. 

Furthermore, b and RSS are independently distributed such that 

                                                                                                            (2) 

            
         

When the original data are observed, b and RSS are jointly sufficient for β and σ
2
. 

Since y is sensitive and hence cannot be released, instead it is replaced with a 

singly imputed synthetic copy which is released. The synthetic data is generated 

by two methods: plug-in sampling and posterior predictive sampling. In the 

former method, parameter estimates are plugged in the MLR model to generate 

synthetic data. In the latter one, posterior draws of the parameter are generated 

using an imputed prior, which are then fed into the MLR model to generate 

synthetic data. The development builds on the exact likelihood based procedures 

developed in Klein and Sinha (2015b) and Klein and Sinha (2015a). 

Plug-in Sampling. The basic mechanism for generating synthetic data via plug-in 

sampling (PIS) is described as follows: let Y = (y1,…, yn) be the original 

confidential data, which are jointly distributed according to the probability density 

function (pdf) fθ(Y), where θ is the unknown (scalar or vector) parameter. To 

generate partially synthetic data, let  ̂   ̂    be the observed value of a point 

estimator of θ, and we plug it into the joint pdf of Y. The resulting pdf, with the 

unknown θ replaced by the observed value  ̂    of the point estimator, is denoted 

by   ̂. The singly imputed synthetic data, denoted by Z, are then generated by 

drawing from the joint pdf   ̂.  

Posterior Predictive Sampling. An alternative method to generate partially 

synthetic data is to use posterior predicitve sampling (PPS) which proceeds as 

follows: suppose that Y = (y1,…, yn) are the original data which are jointly 



 

 

 

 

 

 

 

110                                     International Journal of Statistical Sciences, Vol. 21(2), 2021 

 

distributed according to the pdf fθ(Y), where θ is the unknown (scalar or vector) 

parameter. Assume a prior π(θ) for θ, then the imputed posterior distribution of θ 

given Y is obtained as                     , and used to draw θ
*
 (known as a 

posterior draw). Next, for the posterior draw of θ, a corresponding replicate of Y is 

generated, namely Z = (z1,…, zn)  drawn from the pdf       . 

The organization of the paper is as follows. In Section 2, we carry out Bayesian 

inference based on singly imputed synthetic data generated using the plug-in 

sampling method. In Section 3, we derive Bayesian inference based on singly 

imputed synthetic data generated using posterior predictive sampling. Here we use 

a diffuse form of the imputer prior π(β, σ
2
), involving a hyper-parameter α. In 

Section 4 we present results of some simulation studies. In Section 5 we discuss 

the situation when part of the y data is sensitive, referred to as partially sensitive 

data. We discuss two methods of generating the synthetic data, one based on using 

only the sensitive part of the data to estimate model parameters and the other 

based on the entire data. Again, two methods of synthetic data generation are 

explained, based on plug-in sampling and posterior predictive sampling, and 

resulting Bayesian analysis are indicated. 

We end this section with an observation regarding the existence of sufficient 

statistics in the context of synthetic data that we will use as our foundation, 

courtesy of Klein and Sinha (2015b).  

Lemma 1.1. Suppose that when the original data Y are observed, T(Y) is a 

sufficient statistic for the unknown parameter θ in the original model fθ(Y). Then 

when the synthetic data Z are generated from           (where       is a stand-in 

for θ derived from the original data Y), T(Z) is a sufficient statistic for θ. 

Proof. Suppose based on the original data Y, T(Y) is a sufficient statistic for the 

unknown parameter θ in the original model fθ(Y). Then we can write fθ(Y) = h(Y ) 

gθ [T (Y )], and the pdf of the synthetic data Z is 

∫                  ∫                           ∫                                             

                                                                                                                               (3)  
  

2.  Plug-In Sampling method 

The singly imputed synthetic data in this case consist of a single synthetic version 

of y = (y1,…, yn) , which is denoted as   = (z1,…, zn) , and obtained by drawing 
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z1,…, zn independently such that      (  
   

   

   
)    (4) 

Thus the released data will be of the form {(zi, xi) : i = 1,…, n}, and our goal is to 

discuss Bayesian inference on  β and σ
2 

based on this released data. 

It is convenient to identify the latent structure of the pseudo randomization 

involved in the released data. For what follows we would write identities that are 

sometimes algebraic but also sometimes distributional. The exact case should be 

clear from the context. Specifically, we could write 

 

where W = (w1,…, wn)  ~ Nn(0, In) with  wi      N(0, 1). Then by Lemma 1.1 the 

sufficient statistics based on the released data are  

               
 
   ̂   ̂           

 
   ̂   ̂    

                
 
  ̂           

 
  ̂             (5) 

where U1 ~Np(0, Ip) and       
 , and C is a full rank square root of         such 

that            . It is easy to check that b
*
 is independent of RSS

*
 by using 

the following result: 

If          , Bk×p and Ap×p are constant matrices, then By and y  Ay are 

independent if and only if B A = O. Next, we can write 

   
   ̂   (

 ̂

 
)    

 
   ̂   √     

     
 
   (

 ̂

 
)
 

   
 
            (6) 

where     ̂  ⁄    is a latent quantity. From (2), we have   ̂
 
         where 

U2 ~ Np(0, Ip) independent of U1 and hence from (6) conditional on the 

parameters, we could write  

   
 
     √       

where U3~Np(0, Ip). Thus the likelihood based on the released data for the 

parameters            is given by 

                                                             (7)   
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where           is the density of w ~ Nk(   ) and h(v; d, s) is the density of 

     
 . For full Bayesian specification, we need priors on the unknown quantities 

        . The prior on   is naturally imposed by the original MLR model and 

the single imputation mechanism. Thus, a priori 

                         

For Bayesian inference on the other unknown parameters we assume non-

informative improper priors and assume that all unknown quantities are a priori 

independent. Specifically, we assume 

                  

where        and           and hence the induced prior on    is       

    
   

  for     . The posterior distribution can be computed in the following 

manner: 

                                                

                                                               

The conditional posteriors follow from observing that from the above two 

equations the product of the likelihood of the parameters and their priors break up 

into three conditional posterior distributions as follows 

                                                (8) 

                            (        
    

          
)          (9) 

                
       

         (10) 

The posterior distributions are proper as long as      {       }  

We observe that 
    

                 
       

 so that 

    

               
       

        (11) 

unconditionally and 
    

    
  is independent of the data and  . Here we use the fact 

that if X ~ Scale-inv-          then 
 

   
         

 
. 
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Marginal Posterior of parameters 

                        .   
         

          
        /  

                
       

 
   (√

         

  
) 

where       is the modified Bessel function of the second kind as defined in 

Tweedie (1957). 

Marginal Distribution of data 

            ∫                                         
   

   

Posterior Predictive Density 

Let D be the original dataset and Dnew be the new dataset with   ̃     ̃   as the 

sufficient statistic. 

            ∫                                   

     ̃  
   

 
   ∫ 0

  ̃             ̃     

      
 

   ̃      

 
1

 
        

 

 
        

       
 

 

    

 

Bayes Estimators of   and    

The Bayes estimators for the parameters are calculated as follows: 

 ̂                                                       

 ̂ 
                                        (

    

          
)

 
    

         
  (

 

 
)  

         

          
  

as long as      {       }  Here we use the result that if           

             then      
   

   
 for      
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Credible Sets for   and    

We will compute pivots (we are misusing the definition a bit, we merely mean a 

function of data and parameters whose posterior distribution does not depend on 

parameters) for    and  . Given that we have closed form posterior expressions in 

the above equations, we can write down exact posterior intervals in terms of 

credibility and coverage. 

A pivot for    can be defined as 

   
    

  
  

whose distribution is calculated as 

           

where (n - p)V1, V2 are independent         
  random variables (r.v.’s) due to 

(11). A (1 - γ) level credible set for    based on         is 

0
    

        
 

    

        
1 

 

where          and          are any two constants that satisfy 1 - γ =  (         

          )  length of the credible interval is      (
 

        
 

 

        
). 

Next we define a pivot for β. From (8) 

    ⁄       

√    
       

where    
 
  √

 

  
(

 

  
  )  such that V1, V2 are defined as before and are 

independent of U ~ Np(0, Ip). Finally we define the pivot for β as 

     
                  

    
 

whose distribution is given by 
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 .

   

        
   /            

where the    and F-distributions above are independent. A (1 – γ) level credible 

ellipsoid for β based on    is given by  

{               } 

where          satisfies (1 – γ) = P(T
2 

≤         ). The volume of the credible 

ellipsoid is 

        
   ⁄

 (
 

 
  )

                 ⁄           
 

The above expression follows from the fact that if A is a p × p dimensional 

positive definite (PD) matrix,       , and C > 0, then the volume of the ellipsoid 

{                     } is 0
   ⁄

 (
 

 
  )

1    ⁄        
. 

It is worth noting here that it is easy to show that none of the credible intervals are 

confidence intervals. 

Remark 2.1. If one is interested in the credible set of a single regression 

coefficient or moregenerally in the credible set of a vector of linear combination 

of β, namely Aβ = η where A is a k × p dimensional matrix with rank(A) = k ≤ p, 

we define   
            {          }                and proceed by 

noting that 

  
   

      

       
 .

 

        
   /           

where the    and F-distributions above are independent. 
 

3.  Posterior Predictive Sampling method 

We now proceed as follows to generate the singly imputed synthetic data z = 

(z1,…, zn) under posterior predictive sampling. We start from a joint prior 

distribution              
   

   for                     resulting in the 

posterior 
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                         (        
   

       
)     (12) 

                                      (13) 

We assume throughout that n + α > p + 1. We first draw         from the above 

posterior, and then independently            
                     As before, 

               and                       which are jointly sufficient 

for ( ,     by Lemma 1.1.  

Similarly as in the last section we can write  

   
 
            

where W ~ Nn(0, In). Then the sufficient statistics based on the released data can 

be written as 

                
 
                       

 
             

                                     
 
                   

 
                          (14) 

where U1~ Np(0, Ip), V ~   
   

  C is such that                          are 

independent. 

Thus, we get 

   
 
                  

 
        √     

     
 
     (

  

 
)
 

   
 
               (15) 

where   (
  

 
)
 

is a latent quantity. From (13) and (2), we have 

   
 
            

 
                 

 
      √       

where     
        Np(0, Ip) are all independent of each other and of U1 and hence 

from (15) conditional on the parameters, we could write 

   
 
      √        

where      Np(0, Ip). Thus the likelihood based on the released data for the 

parameters            is given by 
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                                     (16) 

The prior on     is naturally imposed by the original MLR model and the single 

imputation method. From (12),                         
  and thus 

unconditionally                    
  which also implies        

 is independent 

of RSS. Hence  

  
   

  
 

      

         
 
     

   

       
              

 
       (

   

 
 
       

 
) 

For Bayesian inference on the other unknown parameters we assume the same 

independent non-informative improper priors as before. Thus for   > 0 we assume 

                       
   

  

The conditional posteriors can be determined similarly as in the last section as 

follows: 

                                               (17) 

                              (        
    

          
)                   (18)

         (
       

 
 
       

 
)       (19) 

The posterior distributions are proper as long as      {            

       }  

Here again as before we can see that 
    

   
             

  and thus 
    

   
 is 

independent of the data and     

Marginal Posterior of parameters 

                        (   
          

          
       )  

                   
       

   (
         

 
   

    

   
) 

where U(a,b,x) is the confluent hypergeometric function of the second kind. 
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Marginal Distribution of data 

           ∫                                          
   

  

 

Posterior Predictive Density 

           ∫                                  

     ̃  
   

 
   ∫ 0

  ̃             ̃     

       

 
   ̃      

 
1

 
        

 

 
               

       
 

 

    

Bayes Estimators of   and    

The Bayes estimators for the parameters are calculated as follows: 

 ̂                                                       

 ̂ 
                                        (

    

          
)

 
    

         
  (

 

 
)  

             

          
  

as long as      {                   }  Here use the following 

facts: if             then                        
 

   
          

Credible Sets for   and    

As  
    

   
 is independent of     so a pivot for    can be defined as 

   
    

  
 (

    

   
)          

where         
  

              and N1 is independent of N2 where   

       

 
   

       

 
   A (1 – γ) level credible set for    based on   

    

   is  
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0
    

          
 

    

          
 1 

where            and            are any two constants that satisfy (  –   )  

 (                       )  

The length of the credible interval is     (
 

          
 

 

          
). 

Let us now consider 

     
                  

    
 

We will compute the posterior distribution of             . Observe that we can 

write 

   0
                  

        
1 0

   

    
1 0

      

 
1           

Now  

(a)      
                

 
  and hence        

 
 unconditionally. This also 

shows that    is independent of                 and thus    is independent of    

and   . 

          
  

  and is independent of   . 

                   or alternatively    
 
      

 

 
  where            This is 

because if             then 
 

 
           and 

 

   
         . 

Hence finally we see that    is a pivot for   and 

    
 

       
              (  

 

 
)                         

A (1 – γ) level credible ellipsoid for   based on    is given by 

{                   } 

where            satisfies (1 – γ) =  (               )  The volume of the credible 

ellipsoid is 
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 (
 

 
  )

                                

Remark 3.1. If one is interested in the credible set of a single regression 

coefficient or more generally in the credible set of a vector of linear combination 

of  , namely,      where A is a k × p dimensional matrix with rank(A) = k ≤ 

p, we define   
            {          }                and proceed by 

noting that 

    
 

       
              (  

 

 
)                         

 

4. Simulation studies 

In order to conduct the simulation, the population distribution is taken to be the 

linear regression model (1) with 

              

(

 
 
 
 
 
 
 
 

 
   
   

   

   

        

        

        

        

        )

 
 
 
 
 
 
 
 

            

(

 
 
 
 
 
 
 
 

  

  

  

  

  

  

  

  

  

   )

 
 
 
 
 
 
 
 

  

(

 
 
 
 
 
 
 

  
 
 

  
  
  
 
 
 
 )

 
 
 
 
 
 
 

                      (20)  

The regressor variables in    are generated one time at the beginning of the 

simulation, and then held fixed from one iteration to the next. We generate the 

regressor variables (all independently) as follows: 

                                                                                               

                                      

{
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Based on Monte Carlo simulation with 10
4
 iterations, we compute an estimate of 

the coverage probability, the volume or length (as appropriate) of the respective 

credible sets and the Bayes estimators of the parameters, where in all cases, the 

level of credibility is set at 0.95. 

Plug-In Sampling Tables 1, 2, 3 includes the simulation results for a plug-in 

sampling data where the sample size n equals 500, 1000 and 10000 respectively 

for different values of the tuning parameter δ. Some interesting observations are in 

order. The coverage for    gets slightly better initially as we increase δ, starts 

worsening beyond δ ≥ 10, and at large values of δ it is significantly worse. This 

effect is more prominent when n is small, in which case the coverage is not the 

best anyway as is to be expected. The same effect is observed for the coverage of 

β though not as severe. The coverage of β decreases at a much slower rate 

compared to that of    with increasing δ. The size of the credible sets shrink for 

both the parameters as n or δ increases. With decreasing n or increasing δ there 

seems to be no effect on the Bayes estimator of β, while the Bayes estimator of    

becomes slightly worse, which is what we expect since  ̂      does not involve δ 

while       
  has δ in the denominator. All of this suggests that there is a sweet 

spot for the choice of δ to ensure maximum coverage along with the smallest 

possible size of the credible sets of the parameters. For both    and β, from Table 

3 asymptotically the results imply that the Bernstein-von Mises theorem holds, 

with the caveat that inference worsens with increasing δ, quicker for     than for 

β. In the asymptotic case, the credible sets are tighter and the Bayes estimators 

perform admirably for both the parameters, as expected. The behavior of the 

coverage of     and β with respect to different values of δ in the case n = 500 

(depicted by alternating dashes and dots), n = 1000 (depicted by solid lines), 

asymptotic case n = 10000 (depicted by dashed lines) are represented in Figure 

1(a) and Figure 1(b) respectively. 

Posterior Predictive Sampling The general trend of Bayesian inference for 

model parameters observed under PIS is also mirrored when data is generated by 

posterior predictive sampling, as illustrated in Tables 4, 5, 6, 7, 8 and 9. Overall 

for   , compared to PIS, the coverage is lower, the credible interval is wider, but 

the Bayes estimator performs similarly well. For β, compared to PIS, the coverage 

is similar, the Bayes estimator performs similarly well, but the volume of the 

credible ellipsoid is one order of magnitude bigger. The interaction of the 

hyperparameter  and tuning parameter δ is also pretty interesting to observe. 
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Increasing α seems to have no effect on the coverage of the parameters but the 

size of the credible sets narrow down marginally, although asymptotically there 

seems to be no significant difference (as seen by comparing Tables 6 and 9).  

We should be able to find a combination of the two that yields the best inference. 

The inference for β seems to be unaffected by the increase in α, except again for 

the fact that the credible set for β contracts a bit. The behavior of the coverage of 

   and β with respect to different values of   in the case n = 500 (depicted by 

alternating dashes and dots), n = 1000 (depicted by solid lines), asymptotic case n 

= 10000 (depicted by dashed lines) are represented in Figures 1(c), 1(e) and 

Figures 1(d), 1(f) respectively.  

After assessing the results, the recommendation would be to use        . 

The PIS method offers smaller radius of the confidence sets than the PPS method 

and also gives estimates of the parameters closer to the ones obtained from the 

original data, despite giving slightly higher levels of disclosure risk (Moura 

(2016)). So we have a trade off  between data utility and data privacy. 

In general, the Bayesian posterior intervals, credible intervals and HPD intervals 

need not have valid frequentist coverage. This is because the Bayesian intervals 

are not derived using a repeated sampling paradigm; their objective is to 

characterize reasonable parameter values that conform with the specific model and 

prior for a given situation. However, some researchers have advocated a more 

principled approach to the practice where the Bayes intervals are calibrated to 

frequentist calculations so that Bayesian statements can be rejected based on 

empirical tests. Such calibrated Bayes approach (Rubin, 1984; Little, 2006) looks 

for reconciliation between the two paradigms. Another approach for reconciliation 

(asymptotically) is to choose priors that provided credible intervals with accurate 

frequentist coverage. Such priors are called Probability Matching Priors (Datta 

and Ghosh, 1995). 

Usually, Bayesian credible intervals have good frequentist properties provided the 

problem admits some type of Bernstein-von Mises theorem. In the present case 

however, in the presence of latent structure, such Bernstein-von Mises results may 

not be readily available. From the limited empirical investigation it seems that the 

coverage of the credible intervals depends on the δ in the prior even 

asymptotically. It will be interesting to determine the limits of coverage as δ > 0 

varies. We will pursue such investigation in the future. 
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Table 1: Inference for β and σ
2
 for PIS data with n = 500 

 
    σ

2
 β 

δ 
avg 

cvg 

est 

len 

Bayes 

est 

avg 

cvg 

est 

vol 

Bayes 

est 

0.2 0.953 0.360 1.011 0.953 1.06e-03 (10.002, 2.000, 2.000, -2.999, -1.000, -2.000, 0.997, 1.998, 1.998, 3.998)’ 

0.5 0.948 0.359 1.010 0.950 8.81e-04 (10.001, 1.999, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.000)’ 

0.8 0.952 0.359 1.009 0.950 8.25e-04 (9.998, 2.000, 2.000, -2.999, -1.001, -2.000, 1.006, 2.001, 2.002, 4.005)’ 

1 0.951 0.359 1.010 0.949 9.71e-04 (10.002, 2.001, 2.000, -3.000, -0.999, -2.004, 0.997, 1.995, 1.998, 3.998)’ 

2 0.951 0.357 1.005 0.949 8.05e-04 (10.000, 2.001, 2.000, -2.999, -0.999, -2.003, 0.998, 1.996, 1.998, 3.997)’ 

3 0.948 0.355 1.000 0.947 3.99e-04 (9.998, 2.000, 2.000, -3.000, -1.000, -2.001, 1.002, 1.998, 2.000, 3.997)’ 

4 0.945 0.353 0.996 0.946 6.73e-04 (9.997, 2.001, 2.001, -3.000, -0.999, -2.000, 1.002, 1.999, 2.001, 4.000)’ 

10 0.933 0.342 0.972 0.944 4.31e-04 (10.000, 2.000, 2.000, -3.001, -1.000, -2.002, 1.000, 2.002, 2.001, 4.001)’ 

20 0.863 0.326 0.934 0.931 4.78e-04 (10.001, 2.000, 2.001, -3.001, -1.001, -2.002, 1.000, 2.002, 2.003, 4.000)’ 

30 0.745 0.310 0.899 0.919 4.96e-04 (9.997, 2.000, 2.000, -2.999, -1.000, -2.000, 1.002, 2.001, 2.003, 4.000)’ 

50 0.426 0.282 0.834 0.898 3.86e-04 (10.000, 2.000, 2.001, -2.999, -1.001, -2.003, 1.002, 1.998, 1.998, 3.998)’ 

100 0.010 0.226 0.697 0.825 1.94e-04 (9.998, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.000, 2.000, 4.000)’ 

 

Table 2: Inference for β and σ
2
 for PIS data with n = 1000 

 
 σ

2
 β 

δ 
avg 

cvg 

est 

len 

Bayes 

est 

avg 

cvg 

est 

vol 

Bayes 

est 

0.2 0.951 0.251 1.006 0.949 2.48e-05 (10.002, 1.999, 2.000, -3.000, -1.000, -2.001, 1.000, 1.999, 1.999, 4.001)’ 

0.5 0.953 0.251 1.004 0.951 2.13e-05 (10.002, 1.999, 2.000, -3.000, -1.000, -2.000, 0.999, 1.997, 1.999, 4.000)’ 

0.8 0.951 0.250 1.003 0.953 2.19e-05 (10.000, 2.000, 2.000, -3.000, -1.000, -1.998, 1.000, 2.000, 2.000, 4.000)’ 

1 0.950 0.251 1.004 0.951 2.22e-05 (10.002, 1.999, 2.000, -3.000, -1.000, -2.001, 0.998, 1.998, 1.997, 3.997)’ 

2 0.949 0.250 1.004 0.946 2.36e-05 (10.000, 2.000, 2.000, -3.001, -1.001, -2.000, 1.002, 2.000, 2.000, 3.999)’ 

3 0.949 0.250 1.001 0.947 2.47e-05 (10.000, 2.000, 2.000, -3.000, -1.000, -1.998, 1.001, 2.001, 1.990, 3.997)’ 

4 0.948 0.248 0.997 0.949 2.17e-05 (10.000, 2.000, 2.000, -3.000, -1.000, -1.998, 0.999, 2.000, 2.000, 4.000)’ 

10 0.939 0.245 0.986 0.943 1.56e-05 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 2.002, 2.001, 3.999)’ 

20 0.906 0.239 0.965 0.943 2.20e-05 (10.001, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 1.998, 1.998, 3.996)’ 

30 0.843 0.233 0.947 0.935 2.16e-05 (10.001, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 1.999, 2.000, 4.000)’ 

50 0.661 0.222 0.912 0.926 1.53e-05 (9.996, 2.000, 2.001, -3.001, -1.000, -1.997, 1.003, 2.005, 2.004, 4.004)’ 

100 0.133 0.198 0.830 0.899 1.12e-05 (10.000, 1.999, 2.000, -3.001, -1.000, -1.998, 1.001, 2.001, 1.999, 4.002)’ 
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Table 3: Inference for β and σ
2
 for PIS data with n = 10000 

 
σ

2
 β 

δ 
avg 

cvg 

est 

len 

Bayes  

est 

avg 

cvg 

est 

vol 

Bayes 

est 

0.2 0.947 0.078 1.000 0.945 1.81e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 1.999, 2.000, 4.000)’ 

0.5 0.949 0.078 1.000 0.950 1.94e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 2.000, 2.000, 4.001)’ 

0.8 0.95 0.078 1.001 0.951 2.03e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.001, 2.000, 4.001)’ 

1 0.948 0.078 1.000 0.951 2.10e-10 (10.000, 2.000, 2.000, -3.000, -2.000, -2.000, 1.000, 2.000, 2.000, 3.999)’ 

2 0.95 0.078 1.000 0.950 2.00e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.001, 4.000)’ 

3 0.949 0.078 1.000 0.947 2.09e-10 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 2.001, 2.000, 4.001)’ 

4 0.951 0.078 1.000 0.949 2.05e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.001, 2.000, 4.000)’ 

10 0.947 0.078 0.999 0.952 1.93e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.000, 2.000, 4.001)’ 

20 0.946 0.078 0.997 0.951 1.90e-10 (10.000, 2.000, 3.000, -3.000, -1.000, -1.999, 1.001, 2.001, 2.000, 4.001)’ 

30 0.944 0.078 0.995 0.948 1.91e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.000)’ 

50 0.927 0.078 0.991 0.944 1.83e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.001, 4.000)’ 

100 0.823 0.077 0.981 0.946 1.61e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.001, 4.001)’ 

 

Table 4: Inference for β and σ
2
 for PPS data with α = 2, n = 500 

 
  σ

2
 β 

δ 
avg 

cvg  

est 

len 

Bayes  

est 

avg 

cvg 

est 

vol 

Bayes 

est 

0.2 0.955 0.443 1.017 0.951 7.19e-04 (10.003, 2.001, 2.000, -3.001, -1.000, -2.004, 0.995, 1.999, 1.997, 3.997)’ 

0.5 0.955 0.441 1.015 0.949 5.62e-03 (9.996, 2.001, 2.000, -3.000, -1.000, -1.997, 1.005, 2.004, 2.004, 4.005)’ 

0.8 0.949 0.441 1.013 0.946 5.36e-03 (10.000, 1.999, 2.000, -2.998, -1.001, -1.996, 0.999, 2.001, 1.999, 3.999)’ 

1 0.947 0.441 1.013 0.949 5.07e-03 (9.999, 2.000, 2.000, -3.000, -0.999, -1.998, 1.000, 2.001, 2.000, 4.000)’ 

2 0.944 0.438 1.006 0.95 4.86e-03 (10.001, 2.000, 2.000, -3.000, -1.000, -1.996, 0.998, 1.999, 2.002, 3.998)’ 

3 0.951 0.435 1.000 0.946 6.30e-03 (9.998, 2.001, 2.000, -3.000, -0.999, -2.000, 1.000, 1.999, 1.999, 4.002)’ 

4 0.948 0.432 0.994 0.952 8.09e-03 (10.001, 1.999, 2.000, -2.999, -1.001, -1.998, 1.000, 2.002, 2.002, 3.999)’ 

10 0.927 0.415 0.958 0.94 5.26e-03 (10.002, 2.000, 2.000, -3.001, -0.998, -2.005, 0.998, 1.996, 1.995, 3.997)’ 

20 0.818 0.389 0.901 0.929 5.40e-03 (9.998, 2.000, 2.000, -2.999, -1.000, -2.002, 1.000, 2.002, 2.003, 4.003)’ 

30 0.638 0.366 0.848 0.919 3.99e-03 (10.001, 2.000, 2.000, -3.000, -1.000, -1.998, 0.999, 1.998, 1.997, 3.996)’ 

50 0.232 0.323 0.752 0.891 3.00e-03 (10.001, 2.001, 2.001, -3.000, -1.000, -2.002, 0.999, 1.996, 1.998, 3.998)’ 

100 4.0e-04 0.239 0.559 0.805 1.25e-03 (9.998, 2.001, 2.000, -3.000, -1.000, -1.997, 1.003, 2.002, 2.003, 4.003)’ 
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Table 5: Inference for β and σ
2
 for PPS data with α = 2, n = 1000 

 
     σ

2
 β 

δ 
avg 

cvg  

est 

len 

Bayes  

est 

avg 

cvg 

est 

vol 

Bayes 

est 

0.2 0.950 0.308 1.009 0.947 2.38e-04 (10.000, 2.001, 2.000, -3.000, -1.000, -1.999, 1.003, 1.999, 2.002, 4.004)’ 

0.5 0.947 0.308 1.008 0.951 1.56e-04 (10.000, 2.000, 2.000, -3.000, -1.000, -2.003, 1.001, 2.001, 2.000, 4.000)’ 

0.8 0.949 0.308 1.007 0.953 1.78e-04 (10.005, 1.999, 1.999, -3.000, -1.001, -2.002, 0.995, 1.997, 1.997, 3.996)’ 

1 0.945 0.308 1.007 0.949 1.60e-04 (10.000, 2.000, 2.000, -3.000, -1.000, -2.002, 0.999, 2.001, 2.002, 4.000)’ 

2 0.950 0.307 1.004 0.949 1.48e-04 (9.999, 2.000, 2.000, -3.000, -1.000, -2.000, 0.999, 1.999, 1.999, 4.003)’ 

3 0.951 0.306 1.000 0.950 2.09e-04 (9.999, 2.001, 2.000, -3.000, -1.000, -2.003, 0.998, 2.001, 2.001, 3.998)’ 

4 0.949 0.304 0.996 0.952 1.67e-04 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 2.001, 2.003, 4.006)’ 

10 0.937 0.299 0.979 0.944 1.42e-04 (9.999, 2.000, 2.000, -2.999, -1.000, -2.001, 1.000, 2.001, 2.001, 3.999)’ 

20 0.885 0.289 0.949 0.935 1.09e-04 (10.000, 2.000, 2.000, -3.000, -1.000, -2.002, 0.999, 2.000, 1.998, 3.998)’ 

30 0.796 0.280 0.921 0.937 1.36e-04 (10.002, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.001, 2.001, 4.001)’ 

50 0.521 0.263 0.867 0.922 1.20e-04 (10.000, 2.000, 2.000, -3.000, -1.001, -2.000, 1.000, 2.000, 2.000, 4.000)’ 

100 0.030 0.226 0.749 0.893 8.03e-05 (10.001, 2.000, 2.000, -2.999, -1.001, -2.004, 1.000, 1.998, 2.000, 3.999)’ 

 

Table 6: Inference for β and σ
2
 for PPS data with α = 2, n = 10000 

 
σ

2
 β 

δ 
avg 

cvg  

est 

len 

Bayes  

est 

avg 

cvg 

est 

vol 

Bayes 

est 

0.2 0.951 0.096 1.001 0.948 1.54e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.000, 4.001)’ 

0.5 0.954 0.096 1.001 0.953 1.52e-09 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 2.000, 2.000, 4.000)’ 

0.8 0.952 0.096 1.001 0.950 1.52e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.002, 0.999, 2.000, 1.999, 4.000)’ 

1 0.949 0.096 1.000 0.952 1.54e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.001)’ 

2 0.951 0.096 1.001 0.945 1.55e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.000)’ 

3 0.952 0.096 1.000 0.951 1.52e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.001, 4.000)’ 

4 0.949 0.096 1.000 0.950 1.59e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.001, 2.001, 4.001)’ 

10 0.948 0.096 0.998 0.950 1.59e-09 (10.001, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 2.000, 2.000, 3.999)’ 

20 0.945 0.096 0.995 0.946 1.50e-09 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.000, 4.000)’ 

30 0.935 0.095 0.992 0.946 1.56e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 2.000, 2.000, 3.999)’ 

50 0.91 0.095 0.986 0.946 1.47e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.000, 4.001)’ 

100 0.773 0.093 0.972 0.942 1.51e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 0.999, 2.000, 2.000, 4.000)’ 
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Table 7: Inference for β and σ
2
 for PPS data with α = 50, n = 500 

 
     σ

2
 β 

δ 
avg 

cvg  

est 

len 

Bayes  

est 

avg 

cvg 

est 

vol 

Bayes 

est 

0.2 0.951 0.436 1.017 0.949 4.02e-03 (10.002, 2.000, 2.000, -3.000, -1.000, -1.998, 1.000, 1.999, 1.998, 3.999)’ 

0.5 0.952 0.435 1.014 0.953 4.33e-03 (10.000, 2.001, 2.000, -3.000, -0.999, -2.004, 1.000, 1.997, 1.996, 3.994)’ 

0.8 0.947 0.433 1.011 0.945 5.19e-03 (10.002, 1.999, 1.999, -3.000, -0.999, -2.003, 1.000, 1.999, 1.998, 4.001)’ 

1 0.953 0.433 1.009 0.953 4.02e-03 (9.998, 2.000, 2.001, -2.999, -1.001, -2.002, 1.001, 1.997, 2.000, 4.004)’ 

2 0.949 0.431 1.006 0.947 6.53e-03 (10.002, 2.000, 2.000, -3.000, -1.001, -2.001, 1.000, 1.996, 2.000, 4.000)’ 

3 0.949 0.428 0.999 0.949 5.48e-03 (10.001, 1.999, 2.000, -2.999, -0.999, -2.003, 0.998, 1.999, 1.998, 4.001)’ 

4 0.944 0.425 0.994 0.949 4.12e-03 (9.998, 2.001, 2.000, -3.000, -1.000, -1.999, 0.999, 1.997, 2.000, 4.003)’ 

10 0.92 0.409 0.959 0.938 4.19e-03 (10.002, 2.000, 2.000, -3.000, -1.002, -2.001, 1.000, 2.001, 1.999, 3.999)’ 

20 0.822 0.385 0.904 0.931 4.66e-03 (9.998, 2.000, 2.000, -3.000, -1.000, -1.997, 1.004, 2.001, 2.002, 4.001)’ 

30 0.64 0.361 0.852 0.919 3.83e-03 (10.001, 1.999, 2.000, -3.001, -1.000, -2.000, 0.999, 1.998, 2.000, 4.007)’ 

50 0.254 0.321 0.761 0.891 2.08e-03 (9.996, 2.001, 2.000, -3.000, -1.000, -1.995, 1.006, 2.005, 2.002, 4.003)’ 

100 4.0E-04 0.239 0.571 0.809 9.47e-04 (10.001, 2.000, 2.000, -3.001, -1.000, -1.999, 0.998, 1.999, 2.001, 3.996)’ 

 

Table 8: Inference for β and σ
2
 for PPS data with α = 50, n = 1000 

 
  σ

2
 β 

δ 
avg 

cvg  

est 

len 

Bayes  

est 

avg 

cvg 

est 

vol 

Bayes 

est 

0.2 0.947 0.306 1.010 0.951 1.41e-04 (10.000, 2.000, 2.000, -3.000, -1.001, -2.004, 1.001, 2.000, 1.998, 3.999)’ 

0.5 0.948 0.305 1.007 0.950 1.73e-04 (10.002, 2.000, 2.000, -3.001, -1.000, -2.002, 0.997, 1.999, 1.999, 3.999)’ 

0.8 0.949 0.305 1.007 0.948 1.42e-04 (9.998, 2.000, 2.000, -2.999, -1.000, -1.999, 1.001, 1.999, 1.999, 3.999)’ 

1 0.953 0.305 1.005 0.945 1.54e-04 (10.000, 1.999, 2.000, -3.000, -1.000, -1.999, 1.001, 2.003, 2.001, 4.000)’ 

2 0.949 0.304 1.003 0.951 1.68e-04 (9.998, 2.000, 2.000, -3.000, -1.000, -2.001, 1.001, 2.002, 2.002, 4.003)’ 

3 0.947 0.303 1.000 0.948 1.14e-04 (10.002, 2.000, 2.000, -3.001, -1.001, -1.999, 1.001, 2.000, 2.003, 3.990)’ 

4 0.949 0.302 0.998 0.949 1.70e-04 (10.000, 2.000, 2.000, -3.000, -1.000, -1.997, 1.002, 2.001, 2.001, 4.000)’ 

10 0.936 0.297 0.980 0.947 1.36e-04 (10.002, 1.999, 2.000, -3.000, -1.001, -1.999, 0.999, 1.999, 2.000, 4.001)’ 

20 0.882 0.287 0.951 0.937 1.19e-04 (9.998, 2.001, 2.000, -3.000, -1.001, -1.996, 1.005, 2.002, 2.005, 4.002)’ 

30 0.791 0.278 0.922 0.933 1.42e-04 (10.000, 2.000, 2.000, -2.999, -1.000, -2.000, 1.000, 1.997, 2.000, 3.998)’ 

50 0.535 0.262 0.871 0.924 8.79e-05 (10.001, 2.000, 2.000, -3.000, -1.000, -2.003, 1.000, 1.999, 1.999, 4.003)’ 

100 0.034 0.225 0.752 0.888 4.55e-05 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.002, 3.997)’ 
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Table 9: Inference for β and σ
2
 for PPS data with α = 50, n = 10000 

 
   σ

2
 β 

δ 
avg 

cvg  

est 

len 

Bayes  

est 

avg 

cvg 

est 

vol 

Bayes 

est 

0.2 0.953 0.096 1.001 0.950 1.48e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 1.999, 1.999, 3.999)’ 

0.5 0.947 0.096 1.001 0.950 1.62e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.001, 2.000, 4.000)’ 

0.8 0.950 0.096 1.001 0.950 1.46e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.000, 2.000, 4.001)’ 

1 0.947 0.096 1.001 0.952 1.60e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 0.999, 2.000, 2.000, 4.000)’ 

2 0.948 0.096 1.000 0.950 1.40e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 1.998, 1.999, 3.999)’ 

3 0.952 0.096 1.000 0.951 1.42e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 2.000, 2.001, 4.000)’ 

4 0.946 0.096 1.000 0.949 1.38e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.001, 3.000, 4.000)’ 

10 0.949 0.096 0.998 0.951 1.32e-09 (10.001, 2.000, 2.000, -3.000, -1.000, -2.000, 0.999, 2.000, 1.999, 3.999)’ 

20 0.940 0.095 0.994 0.948 1.45e-09 (9.999, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.001, 2.000, 4.000)’ 

30 0.935 0.095 0.992 0.946 1.52e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.001, 4.000)’ 

50 0.909 0.095 0.986 0.950 1.44e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.001, 4.000)’ 

100 0.773 0.093 0.971 0.944 1.38e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.001)’ 
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Figure 1: Variation in coverage of  β and σ
2
 with respect to δ for SI MLR data 

(--- n = 500, ---n = 1000, --- n = 10000) 
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5. Partially Sensitive Data 

We have assumed so far that all the n observations y = (y1 ,…, yn)  in the multiple 

linear regression model are sensitive. Of course, this need not be the case, and 

quite generally we can partition y into two parts: y1 and y2 of dimensions r and (n - 

r), respectively, and assume that the first r observations y1 are sensitive, thus 

requiring privacy protection, and the remaining (n - r) observations y2 are non-

sensitive, and can remain unprotected. Let      
    

     be the corresponding 

partitioning of the matrix X, so that X1 and X2 are of dimensions r × p and (n - r) × 

p, respectively. The reasons for some of the y-values being sensitive can vary 

depending on the context. For example, for income data, large incomes (extreme 

values) may be sensitive. The sensitive nature of y may also depend on the 

(extreme) values of the corresponding covariates x. We outline below two data 

analysis procedures when the latter situation holds, namely, the sensitivity of the 

first r values of y is due to the nature of the covariates, which makes r a non-

random integer.  

Method I: Using only estimates of sensitive part to impute synthetic data 
 

Plug-In Sampling 

We propose to synthesize the r sensitive y-values y1 by applying the plug-in 

sampling method based on these r y-values, as discussed in Section 2. The reason 

for using only the sensitive part of the data for imputing synthetic data is to ensure 

that in the released data the synthetic part and the non-sensitive part are 

independent. The synthetic version of y1 is   
     

      
    such that 

  
        

     ̂   generated independently for i = 1,…, r, where    

   
    

    
    and        

 (      
)    are the sufficient statistics of y1, and 

 ̂ 
              We assume that r > p and n - r > p so that we can draw valid 

inference about the p regression coefficients β separately for each data set. Thus 

similarly,       
    

    
    and        

 (        
)   are the sufficient 

statistics of y2. The released data is    (  
  
   

 )
 
  Then by Lemma 1.1 the 

sufficient statistics for the imputed data are  
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where                  independently,     
     

    
  ,     ̂      is a 

latent quantity,               and          
 . Now suppose we represent 

  
     

 ,     
    

     
  and   

          ̂    , then   
  is independent of     

  

since      ̂    
    

    
 (      

)   . Thus the likelihood based on the 

released data for the parameters            is given by  

           
      

     

      
              

    
        

   

                             

The prior distribution on the parameters is given by for δ > 0 

                                 
   

  
   

 
    

       

   

 

The posterior distribution can be computed in the following manner: 

           
      

                   
      

                

           
      

     

        
      

      
            

      
               

      
      

The conditional posteriors are as follows 
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We see that the expressions match the case when all of y is sensitive as in Section 

2 by deleting all quantities involving y2, X2; replacing X1 by X,   
  by    and r by 

n. The posterior distributions are proper as long as r > p, n > max{r + p, p – δ + 

1}. 

Now as       we use this shorthand from here on) is a non-standard pdf, we 

devise a sampling scheme below using the Accept-Reject method. Let us denote 

        
     

 (        
    

      
    

  )
  

   
      

    
 

 
      

     
  

   

   
   

    

We notice that, if we had started with only the sole assumption r > p,      

        (as it is a covariance matrix), then letting     would yield   
    

  and thus n – r > p, necessitating both of those assumptions in the first place. 

Now turning our attention to     , we see that              by definition 

and also by design. Since the r.v.’s    
         

        embroiled in the 

expression of      are mutually independent,        even when     
  is 

arbitrarily small, hence     
    

 

 
 . This coupled with the fact that      

   

   
  |    |          

 

        (as A > B   λi(B)   i = 1,…, n where 

{             } and {             } are the ordered eigenvalues of 

    PD matrices A and B respectively) produces             where 
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and      is the pdf of a 
        

 

   
    (

       

 
  

   

 
)  r.v. 

Algorithm for sampling from     : 

1. We have the i-th sample     . 

2. Draw a sample             where        
        

 

   
 and also draw u ~ 

U[0; 1]. 

3. If     
    

     
 then            else discard    and go back to step 2. 

 

Theorem 5.1. The joint pdf of     
      

           is given by  
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Posterior Predictive Sampling 

We similarly synthesize r sensitive y-values y1 by applying the posterior 

predictive sampling method based on these r y-values, as discussed in Section 3. 

The synthetic version of y1 is   
     

        
    such that   

     (  
   

    
  ) 

generated independently for i = 1,…, r, where following from equations (12) and 

(13), (  
    

  ) are drawn from the imputed posterior  
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where we assume throughout that          

Then the sufficient statistics for the imputed data are 
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where                  independently,     
     

    
  ,      

      is a 

latent quantity,               and          
 . Next we can basically adapt the 

same procedure as before to obtain the conditional posteriors as follows  
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The posterior distributions are proper as long as      ,      

  
       

 
-       {         } and expressions align as well with our 

results in Section 3 when r = n. 
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Algorithm for sampling from     : 

1. We have the i-th sample     . 

2. Draw a sample             where          (
       

 
 
          

 
) and 

also draw u ~ U[0; 1]. This necessitates the assumption             

3. If     
    

     
 then            else discard    and go back to step 2. Here  
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where B(a, b) is the Beta function. 
 

Theorem 5.2. The joint pdf of     
      

           is given by  
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Method II: Using whole data estimates to impute synthetic data 
 

Plug-In Sampling 

We can relax the assumption n - r > p needed before if we use estimates of the 

entire data to impute the r sensitive y-values y1. In the case, the synthetic version 

of y1 is   
     

        
    such that   

        
        generated independently for 

i = 1,…, r and y2 is defined as before. The likelihood of the released data is 

proportional to what follows below, since we only retain quantities containing 

parameters        necessary for posterior distribution calculation, also using the 

fact that y2|b, RSS is independent of        by the definition of sufficient statistic 
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The last line is due to a change in variable                .  Next we collect 

terms for b as 
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where we know     
  

   

 
 is invertible because     

  
   

 
   due to      , 

  
         . The last three quantities above simplify to  
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from which it is clear that the (conditional) posterior variance of   is 
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so that we still have to respect the condition r > p while employing this method. 

Thus (23) further simplifies to 
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where   
     

    
    

   
 ,     

     
 (      

)   are sufficient statistics for 

  
 . 

So integrating out b from (21) using (22) and (24) and multiplying by our usual 

prior               
   

   we get the joint posterior distribution to be 
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where after observing  
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it leads us to the hierarchical (conditional) posterior distributions as follows 
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The posterior distributions are proper as long as       {       } and the 

expressions align as well with our results from Section 2 when r = n. We notice 

that an advantage of this method is that the sampling of    is straightforward.  

Posterior Predictive Sampling 

We synthesize   
     

        
    such that   

        
         generated 

independently for i = 1,…, r, where          are drawn from the imputed 

posterior given by equations (12) and (13). The likelihood of the released data is 

given by 
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We begin by collecting terms for    as  

   
     

      
     

                     

    
       

     
             

   
     

  
  

        

 (          
    

          
   

  )
 
       

    ( 
 

        
    

          
   

  )    
  
  

        

         
   

          
    

          
   

   

After integrating out    the likelihood stands at  
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Next we collect terms for b as follows 
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We can figure out what the variance-covariance matrix will be when we would 

integrate out b, and thus by definition after a change of variable          we 

have 

                   
    

                 

      
 

        
    

       
 

                

        
    

     
   

     
       

     

   
    

 

   
      

which is true for all values of      We let     to get   
     , so     and  
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Here we use the following fact: for any two PD matrices A and B, 
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Next we follow up from (25) to get, after taking out the common factor 
 

   
  

                     
    

                    
    

     
   

 

                            
    

       

                      
    

                    
    

     
   

 

           
    

    
  
    

     
    

    
   

         

            
    

     
   

               

             
    

                    
    

     
   

 

        

The last three lines give us by repeated application of (26) 
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We integrate out b to find the likelihood to be 
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Next integrating out RSS we have  
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Finally multiplying the integrand by our regular prior               
   

 , we 

find that the product breaks up into exactly three parts corresponding to the 

following posterior distributions 
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The posterior distributions are proper as long as      {            
 }         and they match our results in Section 3 when    . 

All the conditions for existence throughout this work can also be expressed as 

inequalities for  , since once we have the data at hand, that would enable us to 

choose a proper value of   to get the best inference. 

Remark 5.1. We can think of an r based decision rule to analyze synthetic MLR 

data as follows. If r < p we ignore the part of the data that is sensitive and base 

our analysis only on the non-sensitive part. This makes sense in the light of our 

simulation data where n >> p. If r > p, then we use Method II (use whole data 

estimates to impute synthetic data). If r > p, n - r > p then we use Method I (use 

sensitive part estimates to impute synthetic data). If r = n then we use our regular 

methods of analyses outlined in Sections 2 and3. 
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6. Discussion 

In this paper, we have developed model based Bayesian inference based on a 

singly imputed partially synthetic dataset, generated via plug-in sampling, or 

posterior predictive sampling, under the multiple linear regression model. The 

methods developed here have the desirable property that they are exact, and based 

on sufficient statistics. Furthermore, these methods allow a data user to draw valid 

inference when (perhaps due to privacy concerns or limitations in resources) a 

statistical agency can only release a single synthetic dataset instead of multiple 

synthetic copies. The simulation studies presented in Section 4 illustrate that these 

methods perform just as our theory predicts. It should be noted that the 

methodology developed here is model based, and thus it does not immediately 

generalize to cases that do not fall under the multiple linear regression model. In 

other cases, such as when there are a mixture of continuous and categorical 

variables, it may very well be possible to derive analogous methods for analyzing 

singly imputed partially synthetic data, and we hope to pursue this problem in 

future work.  

In what follows, we outline some directions for future research. We have used a 

non-informative diffuse prior here, and it would be interesting to examine how the 

inference is affected by the choice of other (non-informative) priors, probability 

matching priors, and also prions which are conjugate in nature with a suitable 

choice of the hyperparameters so as not to affect data influence. The simulation 

results in Section 4 confirm our theoretical results. It is clear from the simulation 

results in the preceding chapters that the coverage is a decreasing function of  . It 

is desirable to express the nature of this dependence exactly, or even within 

bounds. We would also like to apply this methodology to real-life data to verify 

our results. We can also look into construction of highest posterior density (HPD) 

sets of the parameters discussed in various chapters of this dissertation. This will 

necessitate a judicial choice of the cut-off points of the proposed credible sets.  

In deriving the methodology of Sections 2 and 3, we have made assumptions 

about the process that generated the original data, and about the mechanism used 

to create synthetic data. Indeed, these assumptions are used to derive the Bayesian 

inference for singly imputed synthetic data. We leave it as future work to explore 

the performance of our methodology when some of the conditions do not hold 

(i.e., scenarios where the imputer and/or data analyst overfit or underfit the 

regression model; and a scenario where the imputer’s model is the regression of y 

on x, but the data analyst’s model is the regression of x on y). Another future 

research topic would be to consider extensions of our methodology to non-ideal 

situations that frequently mar real life data (for e.g., non-normal errors; y’s have 

unequal variances and/or are correlated; the original data are from a census, not a 
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sample; only part of y is sensitive; response and covariates are all sensitive; 

original data contain missing observations and so on). We would like to point out 

that the case of partially sensitive data has been addressed in Section 5. 

Since one of our prime objectives is to provide valid inference while protecting 

privacy, we would like to devise methods to quantify privacy in the synthetic data 

(for e.g., Disclosure Risk Analysis as discussed in Klein and Sinha (2015b)) and 

observe the trade-off between quality of inference and privacy of survey 

respondents. It is worth mentioning here that since the data generating methods 

are still the same as in the frequentist case, the disclosure risk is the same for the 

cases considered here as in Klein and Sinha (2015a), Klein and Sinha (2015b), 

and Klein, Zylstra and Sinha (2019). 

An excellent new direction of research would be to go beyond the MLR model, 

and to develop both frequentist and Bayesian analysis of singly and multiply 

imputed data under a GLM framework. Bayesian analysis of Noise Multiplied 

data (Klein, Mathew and Sinha, 2014) will also be quite relevant. 
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