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Abstract 
 

If a two-dimensional region is endowed with a uniform thickness, and the so constructed 

three-dimensional space is filled with a material of uniform density, then the centre of 

gravity (CG) can be found using the marginal (empirical) cumulative distribution 

functions (E)CDF of all dimensions; the same can be done if any three-dimensional 

region is filled with a material of uniform density. This simple method is justified by the 

results in Sarkar and Rashid (2016) which visualizes the mean of a single random variable 

based on its (E)CDF instead of the more traditional visualization of the mean as a fulcrum 

underneath a dot plot or a probability mass/density function. The method easily extends to 

several disjoint regions and/or regions having varying densities. 
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Inspiration 

Twin statisticians K and M love to eat thinly sliced tomatoes. For simplicity, we 

shall assume that their tomatoes are perfectly spherical with North Pole being the 

point where the tomato was once connected to the vine. The brothers bought an 

expensive, fancy slicing machine. To make all slices equally thick, they set the 

distance between the machine’s circular blade and its base at 0.635 cm. You won’t 

be surprised to learn that they made this decision after conducting an elaborately 
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designed experiment to determine the optimal thickness that will keep the tomato 

slices intact and maximize the number of slices, would you? 

The slicing machine manufacturer recommends cutting tomatoes in half with a 

straightedge knife and placing the circular face on the base so that the tomato will 

remain stable during slicing. The brothers happily complied with the 

manufacturer’s recommendation. Furthermore, they agreed to discard the last slice 

for it typically has too much skin and not enough juice and it may not be as thick 

as the other slices. However, the brothers could not agree on the direction of the 

initial cut: Statistician K always cut the tomatoes along the equatorial plane (that 

is, along the plane through the centre orthogonal to the diameter through the North 

Pole), while Statistician M did so with a meridian plane containing that diameter. 

Despite their unresolved disagreement on this one highly contentious issue, on 

which the manufacturer was silent, they ate the same number of slices and the 

same volume of tomatoes (under the assumption the tomatoes are perfect spheres 

of a constant radius). And as the fables say, ―They lived happily ever after.‖ 
 

0. Tribute to Sinha Brothers 

The first author was fortunate to have been a student of the younger of the Twin 

Statisticians at the Indian Statistical Institute in early 1980’s. Although not a 

student of the elder Twin Statistician, attesting to his outgoing generosity, the first 

author enjoyed a special invitation to celebrate his quarter century production of 

Ph.D. scholars. Through many turns in life’s journey, he has been adopted into the 

Sinha family as a favorite nephew. During his long association and collaboration 

with the Sinha Brothers, he has benefitted from several positive impacts — 

inspiration, enthusiasm, and a zest for problem-solving.   

The second author, while serving as a local host, was transformed into an 

unsuspecting student, and was infected with the Technique for Order Preference 

by Similarity to Ideal Solution (TOPSIS) method promulgated by the younger 

Twin Statistician. Since then, the second author has applied the TOPSIS method 

in several real-world data sets and published three articles. He has also benefitted 

from his advice and guidance in many respects.  

There are many stories of intellectual stimulations we have enjoyed in his 

presence: in front of the chalk board; over a cup of tea; at dinners; and during 

casual walks. During a car ride, the first author learned about the twelve-penny 
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problem, which resulted in two papers. His explanation of the correct analysis of 

Sudoku as an experimental design, prompted the discovery and analysis of 

orthogonal Sudoku designs, again resulting in two papers. Academic 

accomplishments aside, the familial care, the constant encouragement, and the 

inspiration to reach lofty standard of excellence are the most cherished blessings 

we have received through our association with the Twin Statisticians. 

 

1. Introduction 

Inspired by the tomato slicing story, we who love to eat potatoes (albeit against 

the doctors’ advice) wanted to make perfectly shaped French Fries. For simplicity, 

assume that our potatoes, after peeling, are convex solids of uniformly dense 

material. We cut potatoes into uniform slices of thickness  , and discarded the 

uneven end slices; then we cut each slice into strips of equal thickness  , and 

discarded the uneven end strips; finally, we trimmed off the ends of the strips to 

make them perfect rectangular parallelopipeds. (You may replicate our procedure 

without fear of a lawsuit for patent violation.)  

If all the trimmed off portions together amount to a negligible proportion of the 

potato, which assumption is reasonable if you let the thicknesses   and   tend to 

zero, you can find the volume of the potato by adding up the lengths of the strips 

and then multiplying the sum by   , the area of the cross-section. The Riemann 

inner sum interpretation of integration guarantees the aforesaid claim (see [1]). 

Whereas volume measures the amount of space an object occupies, we are also 

interested in the object’s centre of gravity (CG) because all objects, irrespective of 

their shapes, behave and act as though their mass is concentrated at the CG. In 

uniform gravity, the CG is the same as the centre of mass. Understanding CG is 

critical to designing an aircraft or playing many sports effectively (see [12]). Any 

sport that involves balance—from figure skating to surfing—and requires quick 

adjustments to maintain control without expending too much energy, can benefit 

from knowing where the CG is at any given moment. This is the reason tennis 

players plant their feet wide apart, high jumpers curl their bodies up and around 

the pole, and tight rope walkers carry long sticks or bend their knees. 

Calculus informs us that the CG of any 3-D region endowed with an arbitrary 

probability density function (PDF)  (     )  (the physical density function 
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 (     )  divided by the mass   ∫ ∫ ∫  (     )
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whose coordinates ( ̅  ̅  ̅) are obtainable by integration. For example, 
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   is the marginal PDF of   obtained from 

 (     ) by integrating out   and   (see [4]). Likewise, one can obtain  ̅ and  ̅ 

using marginal PDF’s of   and   respectively. However, until these integrals are 

evaluated, one cannot locate the CG.  

Under the assumption the tomatoes are perfect spheres of a constant density 

everyone knows the CG of a tomato is at the geometric centre of the sphere. 

However, as curious observers, the twin statisticians K and M posed the questions: 

―Where is the CG of each hemisphere after the initial cut with a straightedge 

knife? When the machine has removed several slices, where is the CG of the 

remaining cap of the sphere?‖ Rumour has it that one of them used such questions 

to determine if he would admit a student to conduct research under his guidance.  

In contrast, for our odd-shaped potatoes, the CG is not obtainable from geometric 

considerations alone, even though each potato strip has its CG at the geometric 

centre of the parallelopiped (where its three diagonals coincide). How should one 

aggregate these centres of gravity for the strips to find the overall CG of the potato 

(or all strips combined)? 

In this paper, we visualize the CG of an arbitrarily shaped 3-D region filled with 

material of uniform density, or of arbitrary density. Interested readers may see, 

[2], for other visualization techniques. 

In Section 2, we recall how to visualize the mean of a single random variable 

having an arbitrary mass/density function. Section 3 extends the notion to 2-D 

regions with uniform density. Section 4 finds the CG of 2-D regions with arbitrary 

density, and of 3-D regions with constant density. Section 5 documents some 

connections between the CG and the geometric centres of 2-D and 3-D regions of 

constant density. Section 6 extends the technique to 3-D regions filled with 

arbitrary density. Interested readers may doublecheck their understanding by 

solving exercise problems scattered throughout the paper, including the questions 

already posed by the twin statisticians and by us. 
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2. Visualizing the Mean of a Single Variable  

The location of the mean is the CG of a one-dimensional object whose mass is 

concentrated at several discrete points (with equal or unequal weights) or over a 

continuum of points with an associated PDF. Here is a traditional way to visualize 

the mean: Imagine a rectangular rigid sheet of material of negligible weight (say, 

it is made of a polystyrene such as Styrofoam) on which a number line is drawn 

parallel to one side of the rectangle. Next, imagine that on this rectangular sheet 

are planted heavy metal (say, made of lead) balls of equal weight, or cylindrical 

rods of equal cross-section and equal density, but lengths proportional to the 

probability masses, or a lamina of uniform density in the shape of a region below 

the PDF (and above the  -axis). It is optional — but a good practice — to also 

plant a mirror image (about the number line) of the heavy metal pieces. Then 

mount this physical structure on a straight wedge orthogonal to the number line 

keeping it balanced. The location of the wedge (or fulcrum) in relation to the 

number line is the mean or the CG of the single variable, see [13], as illustrated in 

Figure 1. 

Sarkar and Rashid [6] gives an alternative method to obtain the mean of a single 

variable requiring no physical structure, but only a 2-D picture of the (empirical) 

cumulative distribution function (ECDF) of the variable. The paper was translated 

into German in [8] by the Editor of Stochastik in der Schule; and it was extended 

by the authors in [7] to also include visualizing the median, mean deviation and 

standard deviation. Visualizing the mean involves imposing a vertical line on the 

ECDF and sliding it until the area to the left of the vertical line (below the ECDF 

and above the  -axis) equals the area to the right of the vertical line (above the 

ECDF and below the horizontal line    ), and is illustrated in Figure 2. 
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Figure 1: To find the location of the mean balance the physical structures on a 

straight wedge orthogonal to the number line. This can be done for (a) a dataset, 

(b) a probability mass function and (c) a probability density function. 
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Figure 2: To find the location of the mean slide a vertical line until the left and 

the right shaded areas become equal. This can be done for (a) a dataset, (b) a 

probability mass function and (c) a probability density function. 
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Note that if the vertical scale of the ECDF is magnified or shrunk, the location of 

the mean (that is, the location of the area-equalizing vertical line) does not change 

at all! Therefore, the vertical axis can be eliminated without any loss. However, if 

the horizontal scale is linearly transformed, the location of the mean is similarly 

transformed, since   ,    -       , -. 

An experimental study (Sarkar and Rashid, [10]) has found that students are better 

at verifying the location of a vertical line that equalizes areas on its two sides than 

verifying the location of a fulcrum that balances a dot plot (for data), or a PMF 

plot (for discrete random variable), or a PDF plot (for a continuous random 

variable). 

3. The CG of a 2-D Region  

The centre of gravity of a scatterplot is the mean vector ( ̅  ̅)  See, [3]. It is also 

the point of intersection of the regression lines of y on x and x on y.  

If a lamina (of uniform thickness and made of material of uniform physical 

density) is cut out in the shape of any 2-D region, then its CG can be found by 

balancing the lamina on a pinpoint. Alternatively, one may balance the lamina on 

a straight wedge and mark the line along the wedge and repeat the task after 

rotating the lamina roughly 90 degrees. (There is no need to be exact in measuring 

the rotation. However, a rotation close to 90 degrees ensures a smaller 

measurement error.) The point of intersection of the new balancing line along the 

wedge with the first balancing line is the CG of the lamina. See Figure 3(a). 

Conducting such balancing tasks may be time consuming and somewhat 

frustrating; but the concept as a thought experiment is not too difficult to grasp.  

An alternative method (see [11]) works reasonably well: Hang the lamina from 

any one point close to the boundary until it comes to rest next to a plumb line (a 

thread carrying a heavy ball). Draw the vertical line of (the shadow of) the thread 

on the lamina. Then do the same task starting from another point. See Figure 3(b). 

The CG of the lamina is the point where the two drawn lines intersect. Sometimes, 

in view of symmetry, one of these lines can be anticipated without 

experimentation. 



 

 

 

 

 

 

 

Sarkar
 
and Rashid: Visualizing the Centre of Gravity...                                                 27 

 

 

 

 
Figure 3: The CG of a 2-D lamina using (a) a wedge, and (b) a plumb line. In 

view of symmetry, balancing a second time is unnecessary. 

 

Without conducting the physical experiments mentioned above, we can find the 

CG of a 2-D region, by extending the concepts in Sarkar and Rashid [7] as 

follows: Superimpose the lamina on a set of many (say, 20 or 100) vertical grid 

lines at regular intervals. Measure the lengths of the intersections of these grid 

lines with the 2-D region. (These segments of intersection when bottom aligned 

and rescaled become a proxy PMF.) Calculate the cumulative total lengths going 

from left to right; and divide them by the grand total length of all segments of 

intersection. A plot of these relative cumulative lengths against the locations of 

the parallel grid lines becomes a proxy ECDF. Find the (possibly new) line 

parallel to the grid lines that equalizes the areas to the left and the right and draw 

it on the lamina. Next, repeat the process after rotating the grid lines by 90 

degrees, and making them horizontal. (Since this is a thought experiment, we can 

insist on an exact 90 degree rotation; but exactness is not necessary. Sometimes a 

different rotation may be simpler to handle in view of symmetry.) Figure 4 

illustrates the method, where we have intentionally eliminated the grid lines to 

avoid a lot of clutter. 
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Figure 4: The CG of a 2-D lamina is the point of intersection of the area-bisecting 

lines corresponding to the ECDF of projections in two (orthogonal) directions. 

If one drills a cylindrical hole through the CG of the 2-D lamina of uniform 

thickness and uniform density, insert a tight-fitting pin through the hole, and 

mounting the pin horizontally on a pair of grooves spins the lamina, it will come 

to rest at arbitrary positions. See Figure 5(c, d). If the hole is drilled anywhere 

else, the lamina will come to rest only when the CG is vertically below the hole. 

See Figure 5(a, b). 
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Figure 5: (a), (b) A 2D lamina, held vertically, after rotation stops when the CG is 

vertically below the centre of rotation. (c), (d) If an object is rotated about its CG, 

it can stop in any orientation, two of which are shown. 
 

What happens if the 2-D lamina is uniformly thick, but is made up of unevenly 

dense material? We interchange the thickness and the physical density (which task 

is impossible to accomplish in the physical world, but it is a rather simple matter 

in our thought experiment). That is, we imagine a lamina whose physical density 

is the same everywhere, but the thickness at a point (   ) is proportional to the 

original density  (   ). This takes us to a special case of a 3-D region filled with 

uniformly dense material and is solved in the next section.  
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4. The CG of a 3-D Region  

Suppose that we are given a 3-D object made of material of uniform physical 

density. Conducting a physical experiment to discover the CG is almost 

impossible. At best, one can hang the 3-D object from a pin, pointing down, and 

when the object comes to rest, raise another pin vertically below the first pin to 

touch the object. Then vertical line joining the two pinpoints passes through the 

CG. This line passes through the object and as such cannot be drawn; only its end 

points can be marked on the object. Repeating the experiment, one can identify 

the CG as the point of intersection of the two lines designated by marking their 

endpoints. See Figure 6. 

 

 

Figure 6: Identifying the CG of a 3-D object by hanging it. One can bypass 

hanging (a), in view of symmetry. 

Extending our thought experiment described in the previous section, now we can 

superimpose the 3-D object onto a set of vertical lines located on a rectangular 

grid on the   -plane, and then bottom align the line segments of intersection so 

that their lower ends touch the   -plane. This will serve as a proxy of the 

marginal joint PDF of (   ) when the heights of the vertical line segments are 

normalized to have a total height of one. From this point on, obtaining the 
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marginal ECDF of   and the mean of   is a straight-forward matter; likewise, 

obtain the marginal ECDF of   and the mean of  .  

Next, one can project all vertical line segments of intersection (before they are 

projected to the   -plane) to the  -axis and separated by a constant gap. This will 

endow the z-axis with a (non-uniform) marginal PDF. Convert that marginal PDF 

into a CDF and find the mean of   using the area-equalizing line for a single 

random variable. See Figure 7. 

 

Figure 7: Project the 3-D object onto the   -plane and then onto the  -axis and 

the  -axis. Separately, project the same 3-D object onto the  -axis. Then find 

 ̅  ̅  ̅ using the univariate ECDF’s. 

 

Alternatively, to obtain the mean of  , one can turn the grid lines sideways 

making them orthogonal to the   -plane and then project the line segments of 

intersection onto the   -plane. The mean of   obtained by the two different 

projections on the   - and the   -planes must be the same, providing a check in 

the visualization. A final confirmation can be designed by turning the grids to 



 

 

 

 

 

 

 

32                                       International Journal of Statistical Sciences, Vol. 21(2), 2021 

 

become orthogonal to the   -plane and by obtaining the means of   and   based 

on the line segments of intersection with the object. Such built-in redundancy 

serves to verify accuracy. 

 

5. The CG and Other Geometric Centres of 2-D/3-D Objects 

Oftentimes the CG may coincide with some other geometric centres. For example, 

for a triangular lamina of uniform density, the CG is at the centroid (the point of 

intersection of the medians) of the triangle. For a parallelogram, the CG is at the 

point of intersection of the diagonals. What about the CG of an arbitrary 

quadrilateral? Figures 8(c) and 9(d) show how to find the CG of convex and 

concave quadrilaterals, respectively.  

 

 

Figure 8: The CG’s of (a) a triangle, (b) a parallelogram, (c) a convex 

quadrilateral, (d) a semi-circle, and (e) a semi-disk. 

Figure 8(c) also illustrates how two CG’s of two triangles are combined to form a 

common CG of the convex quadrilateral: Simply find the weighted average of the 

given two CG’s with weights proportional to the thought-of mass concentrated at 

each CG. The CG of the right semi-disk *(   )             + shown in 
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Figure 8(e) is at .
 

  
  /. Consequently, the CG of the right semi-circle (boundary 

of disk) *(   )             + shown in Figure 8(d) is at .
 

 
  /. 

Thus, when several objects together form a composite object, the CG of the 

composite object is given by the weighted average of the CG’s of the individual 

objects. To reiterate: When an object is dissected into several parts then the 

weighted average of the CG’s of the parts gives the CG of the original object. 

What if we remove a portion of an object? How can we find the CG of the 

resultant remaining object based on the CG’s of the original object and the 

removed object? We illustrate the results in Figure 9 and thereafter explain how to 

obtain them.  

 

 

Figure 9: To find the CG of the leftover portion when (a, b) a circular hole is 

punched out of a bigger circle, (c) a circular hole is punched out of a triangle, and 

(d) a smaller triangle is removed from a larger triangle with the same base. 

Assume each object is made up of uniform thickness and uniform density. 

To locate CG of the resultant object, in Figure 9(a, b) go from the centre   of the 

hole of radius   to centre   of the given circle of radius unity and continue another 
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   (    ) of the distance already covered. In (c) go from centre   of the hole 

of radius   to the centroid   of the given triangle and continue another 
   

     
 of 

the distance so covered, where   is the area of the given triangle. In (d) go from 

centroid  ̃  of the removed triangle to the centroid   of the given triangle and 

continue another 
 ̃

   ̃
 of the distance so covered, where  ̃ is the area of the removed 

triangle and   is the area of the given triangle.  

Note that in Figure 9 we have simply reverse engineered the additive process, 

giving credence to the truism: ―Subtraction is the inverse operation of addition.‖ 

That is, to find    , we ask what must be added to   to obtain as sum  . 

Using the above principle, a reader may solve the following 2-D problems:  

P2.1 Find the CG’s of the smaller sector of a unit circle with center   formed by 

radii    and    making an angle      between them. Answer: The CG 

is on the mid-radius of the sector at a distance (   )         from  . 

P2.2 Find the CG’s of the smaller part of a circle with center   separated by a 

chord subtending an angle    at the  . Answer: The CG is in the smaller 

part of the circle on the radius orthogonal to the chord and at a distance   

from   given by   (   )      (      ) (          ). 
P2.3 Find the CG of a composite object obtained by attaching external equilateral 

triangles to the three sides of a triangle measuring 5, 12, 13 cm. 

P2.4 Find the CG of a composite object obtained by attaching external 

semicircles to the three sides of a triangle measuring 20, 48, 52 cm. 

P2.5 Find the CG of a semi-disk with density proportional to the distance from 

the midpoint   of the diameter. Answer: The CG is in the disk on the line 

orthogonal to the diameter at a distance   (  ) from  . 

P2.6 Find the CG of a semi-disk of radius one with density proportional to one 

minus the distance from the midpoint   of the diameter. Answer: The CG is 

in the disk on the line orthogonal to the diameter at a distance     from  . 

We also leave it to the reader to extend the ideas of this section to 3-D objects of 

uniform density by solving the following 3-D problems: 

P3.1 Find the CG when to the top face of a unit cube a pyramid is augmented 

such that its base is a unit square matching with the cube’s top face, and its 

slant faces are equilateral unit triangles. Answer: Volume ratio of pyramid 

to unit cube is    √ , and the CG of the pyramid is 
√ 

 
 above the square 
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base (or the upper square face of the cube). The overall CG is at height 
     √ 

  √ 
  0.6291 from the bottom square face of the cube. 

P3.2 Find the CG of the remainder solid when a unit octahedron is excavated out 

of the composite solid in Problem 3.1, or equivalently, a pyramid is 

excavated such that its base is a unit square matching with the cube’s top 

face, and its slant faces are equilateral unit triangles. Answer: The CG of the 

remainder solid is at height 
     √ 

  √ 
  0.4003 from the bottom square face of 

the cube. 

P3.3 If every point on the boundary of a plane base (of arbitrary shape) is joined 

to an apex using slant line segments, we obtain a cone. Find the CG of the 

frustum of such a cone when we remove another cone using a plane cut 

through the midpoints of slant lines. Answer: The original cone, the 

removed cone and the frustum all have their CG’s on the line joining the CG 

of the 2-D base to the apex. If   is the height of the cone (the perpendicular 

distance between the apex and the base), then the CG of the cone is at height 

   ,  and the CG of the frustum is at height 
   

  
 from the larger base. 

P3.4 Find the CG of a hemisphere when the unit sphere is sliced by the   -plane. 

Also find the CG of the cap of a sphere when the sphere is sliced off with a 

place cut at height   ,    -. Answer: The CG of the hemisphere is at 

height 
 

 
. We find it mildly surprising that whereas the CG of a half-disk 

shown in Figure 8(d) involves  , the CG of a hemisphere does not! More 

generally, the CG of the cap of the sphere is at height 
 

 
.  

 

   
/. 

P3.5 Find the CG of a unit ball from which another ball of radius ½ and 

tangential to the unit ball has been removed. Answer: Rotate the ball so that 

the point of tangency is at the North Pole. Then the CG is at height  
 

  
. 

P3.6 Find the CG of the northern hemisphere (with a spherical hollow) when the 

ball with a spherical hollow mentioned in Problem 3.5 is cut along the 

equatorial plane. Answer: The CG is at height 
 

 
. 

 

6. The CG of 3-D Objects with Uneven Density 

We can extend the techniques of the previous sections to find the CG of a 3-D 

object with non-uniform density as follows: Slice the object thinly and treat each 
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slice as a 2-D region endowed with uniform thickness, but uneven density. Next, 

think of each slice converted into a 3-D region of uneven thickness proportional to 

the original density but filled with material of uniform density, and find the CG of 

each slice as done previously. Finally, compute the weighted average of the CG’s 

of all slices to find the overall CG of the 3-D object. Below we give an example. 

Suppose that we have a unit cube ,   -  filled with material having density at 

(     ) proportional to      , with proportionality constant 2/3. The contours 

of equal density are shown in Figure 10 (a). These are planes orthogonal to the 

diagonal   joining (     ) to (     ). Where is the CG of this loaded cube? 

The density being symmetric in (     ), the CG is on D; hence, it is of the form 

 ̅   ̅   ̅. We shall show that  ̅     .  

Let us obtain the marginal PDF of  . First, we take a thin slice through   parallel 

to the   -plane. See Panel (a). This slice has uniform thickness, as small as you 

can imagine, but nonuniform density proportional to      . Next, in Panel (b), 

we replace the thin slice by a solid of uniform density on base      ,   -  ,   - 

shown on the left side and height       shown horizontally. The volume of 

this new solid equals that of a rectangular parallelopiped       plus 

essentially a unit cube, or    . Hence,   ( ) is proportional to    , which we 

depict in Panel (c) by mounting a right isosceles triangle with legs 1 attached on 

top of a unit square. The CG of the triangle satisfies       with mass ½, while 

the CG of the square satisfies       with mass 1. Hence, the combined CG, 

obtained by taking a weighted average, satisfies 

 ̅  
 .

 

 
/   .

 

 
/ .

 

 
/
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Figure 10: Finding the CG of a unit cube with density proportional to       
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We leave it to the reader to show that a cube [   -  with density at (     ) 

proportional to     has CG at (           ). Also, for a northern hemisphere of 

radius unity with density proportional to the distance from the centre   (     ) 

of the base circle has a CG at (       ). Likewise, for a northern hemisphere of 

radius unity with density proportional to one minus the distance from the centre 

  (     ) of the base circle has a CG at (        ).  

  

Afterthoughts 

We count it a privilege and a blessing to have been students and collaborators of 

one of the twin statisticians. There are many stories of intellectual stimulations we 

have enjoyed in his presence: in front of the chalk board; over a cup of tea; at 

dinners; and during casual walks. During a car ride, one of us learned about the 

twelve-penny problem, which resulted in papers [5] and [9]. For full disclosure, 

we admit the tomato slicing episode narrated in the introduction is entirely 

fictitious, though not unrealistic. Stories like this surround legendary figures, 

which our honourable twin statisticians surely are. 

We sincerely hope any potential student wishing to write a PhD dissertation under 

either member of the twin statisticians will have read this paper and be prepared to 

answer any question involving CG. Of course, the twin statisticians have in their 

arsenal a multitude of other crazy problems to unnerve anyone. But their love for 

the profession and care for the deserving student can overcome any weakness in 

them and adopt them as beloved disciples. We speak from experience. 

Acknowledgments: We thank the Joint Editors of this volume for inviting us to 

contribute a paper in honour of Bimal Sinha - Bikas Sinha Statistical Twins. It has 

been a pleasure to work on this project. 
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Appendix 

# Figure 1(a) 

dev.new(width=5,height=3) 

par(mai=c(1,1,1,1.2))  

x=c(8,5,6,10,5,6,7,8,8,9) 

n=length(x) 

x1=min(x) 

x2=max(x) 

stripchart(x,method="stack", pch = 19, cex=2, xlim=c(x1,x2), 

las=1, 

xaxs="i",yaxs="i",frame.plot=FALSE,ylab="",xlab="", 

xaxt="n",xpd=TRUE, 

col="black") 

rect(4,0,11,2, xpd=TRUE) 

axis(1, pos=1, at=c(seq(0,10,1)),padj=0,cex=.8,tck=0)  

y<-mean(x);y 

points(y,-.38, pch=2, cex=3,xpd=T,col="black") 

points(y,1.63, pch=2, cex=3,xpd=T,col="lightgray") 

segments(y,-.05,y,1.95,col="lightgray",xpd=T) 

segments(y+.27,-.6,y+.27,1.4,col="lightgray",xpd=T) 

segments(y+.27,-.6,y+.27,.03,col="black",xpd=T)   # black 

segments(y-.27,-.5,y-.27,1.4,col="lightgray",xpd=T) 

segments(y-.27,-.5,y-.27,.03,col="black",xpd=T) # black 

# Figure 1(b) 

dev.new(width=5,height=3) 

par(mfrow=c(1,1),mai = c(1,.60,.60,.60 

ex1=c(3, 4, 7, 8, 9) 

x<-c(0,1,2,3) 

p_x<-c(1/8,1/4,3/8,1/4) 

sum(p_x) 

plot(x,p_x,type="h",xlim=c(-

.5,3),ylim=c(0,.4),lwd=2,xaxs="i",yaxs="i", 

frame.plot=FALSE,xlab="",ylab="",yaxt="n",axes=FALSE,xpd=T) 

axis(1, at=seq(0,3,by=1),cex.axis=.8,las=1) 

axis(2, at=seq(0,.5,by=.1),cex.axis=.8,las=1) 

arrows(-.5,0,3.2,0,code=2, xpd = TRUE, length=.10) 

text(3.3,0,xpd=TRUE,expression(italic(x))) 

arrows(-.5,0,-.5,.45,code=2, xpd = TRUE, length=.10) 

text(-.5,.5,xpd=TRUE,expression(italic(p(x)))) 

mean_x=sum(x*p_x) 

points(mean_x,-.038, pch=2, cex=2,xpd=TRUE) 

# Figure 1(c) 

dev.new(width=5,height=3) 

par(mfrow=c(1,1),mai = c(1,.60,.60,.60))  
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x<-seq(0,10,.1) 

f_x<-dgamma(x,shape=4) 

plot(x,f_x,type="l",ylim=c(0,.3),las=1,xaxs="i",yaxs="i",fra

me.plot=FALSE,xlab="", 

ylab="",axes=FALSE,lwd=2) 

axis(1, at=seq(0, 10, by=1),cex.axis=.8,las=1) 

axis(2, at=seq(0, .3, by=.1),cex.axis=.8,las=1) 

arrows(0,0,10.7,0,code=2, xpd = TRUE, length=.10) 

text(11,0,xpd=TRUE,expression(italic(x))) 

arrows(0,0,0,.345,code=2, xpd = TRUE, length=.10) 

text(0,.37,xpd=TRUE,expression(italic(f(x)))) 

mean_x=4 

points(mean_x,-.028, pch=2, cex=2,xpd=TRUE) 

 

# Figure 2(a) 

dev.new(width=5,height=3) 

par(mfrow=c(1,1),mai = c(1,.80,.60,1.5))  

x=c(8,5,6,10,5,6,7,8,8,9) 

n=length(x);n;summary(x) 

x1=min(x);x2=max(x) 

x<-sort(x); n=length(x) 

f<-rep(1/n,n);F<-cumsum(f) 

plot(x,F,xlim=c(min(x)-

1,max(x)),ylim=c(0,1),type="s",las=1,xaxs="i",yaxs="i", 

frame.plot = FALSE,ylab="", xlab="",xaxt="n") 

axis(1,at=c(seq(x1-1,x2,1)))  # CHNAGE VALUE 

arrows(min(x)-1,0, max(x)+1,0, code = 2, xpd = TRUE, 

length=.12)  

arrows(min(x)-1,0, min(x)-1,1.15, code = 2, xpd = TRUE, 

length=.12)  

segments(min(x)-1,1,max(x),1,lty=2) 

segments(max(x),1,max(x)+.3,1,lty=1,xpd=TRUE) 

segments(min(x),0,min(x),F[1],lty=1) 

m=mean(x) 

for(i in 1:length(x)){ 

  if(x[i]<m){ 

   

rect(x[i],0,m,F[i],col="grey",angle=135,density=15,border=NA

) 

  } 

  else if(x[i]>m){ 

    rect(m,F[i-

1],x[i],F[i],col="grey",angle=45,density=15,border=NA) 

  } 
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} 

abline(v=m) 

par(new=TRUE) 

plot(x,F,xlim=c(min(x)-

1,max(x)),ylim=c(0,1),type="s",las=1,xaxs="i",yaxs="i", 

frame.plot = FALSE,ylab="", xlab="",xaxt="n",yaxt="n") 

segments(min(x)-1,1,max(x),1,lty=2) 

segments(max(x),1,max(x)+1,1,lty=1,xpd=TRUE) 

segments(min(x),0,min(x),F[1],lty=1) 

segments(mean(x),0,mean(x),1.13,xpd=TRUE,lwd=2) 

arrows(mean(x)+.04, 1.07, mean(x)+.2, 1.07, code = 2, xpd = 

TRUE, length=.065)  

arrows(mean(x)-.04, 1.07, mean(x)-.2, 1.07, code = 2, xpd = 

TRUE, length=.065)  

segments(x1,0,x2,0) 

text(x1-1,1.25, 

expression(ECDF~italic(F)~of~italic(x)),xpd=TRUE, cex=.9) 

text(x2+1.3,0, expression(italic(x)),xpd=TRUE, cex=1) 

text(mean(x),-.08, expression(bar(italic(x))),xpd=TRUE, 

cex=.9) 

#Figure 2(b) 

dev.new(width=5,height=3) 

par(mfrow=c(1,1),mai = c(1,.80,.60,1.5))   

x<-c(0,1,2,3) 

p_x<-c(1/8,1/4,3/8,1/4) 

F<-cumsum(p_x) 

plot(x,F_x,xlim=c(-

.5,4),ylim=c(0,1),type="s",las=1,xaxs="i", 

yaxs="i",frame.plot=FALSE,xlab="",ylab="",cex=.8) 

abline(h=1,lty=2);segments(4,1,5,1) 

m<-sum(x*p_x) 

abline(v=m) 

segments(0,0,0,F[1]) 

for(i in 1:length(x)){ 

  if(x[i]<m){ 

    

rect(x[i],0,m,F[i],col="grey",angle=135,density=15,border=NA

) 

  } 

  else if(x[i]>m){ 

    rect(m,F[i-

1],x[i],F[i],col="grey",angle=45,density=15,border=NA) 

  } 

} 
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abline(v=m) 

par(new=TRUE) 

plot(x,F_x,xlim=c(-

.5,4),ylim=c(0,1),type="s",las=1,xaxs="i", 

yaxs="i",frame.plot=FALSE,xlab="",ylab="",cex=.8,xaxt="n",ya

xt="n") 

segments(m,0,m,1.13,xpd=TRUE,lwd=2) 

arrows(m+.04, 1.07, m+.2, 1.07, code = 2, xpd = TRUE, 

length=.065)  

arrows(m-.04, 1.07, m-.2, 1.07, code = 2, xpd = TRUE, 

length=.065)  

arrows(-.5,1,-.5,1.13, code=2,xpd=TRUE,length=.10) 

text(-

.5,1.23,expression(CDF~italic(F)~of~italic(x)),cex=.9,xpd=TR

UE) 

arrows(-.5,0,4.4,0, code=2,xpd=TRUE,length=.10) 

text(4.6,0, expression(italic(x)),xpd=TRUE,cex=.9) 

text(m,-.1, expression(italic(mu)),xpd=TRUE, cex=1) 

# Figure 2(c) 

dev.new(width=5,height=3) 

par(mfrow=c(1,1),mai = c(1,.80,.60,1.5)) #bottom, left, top, 

right 

 

x<-seq(0,10,.01) 

F_x<-pgamma(x, shape = 4)  

plot(x,F_x,type="l",las=1,xaxs="i",yaxs="i",frame.plot=FALSE

,xlab="",ylab="",axes=FALSE) 

axis(1, at=seq(0, 10, by=1),cex.axis=.8,las=1) 

axis(2, at=seq(0, 1, by=.1),cex.axis=.8,las=1) 

segments(0,1,10,1,lty=2,xpd=T) 

segments(10,1,10.5,1,xpd=TRUE) 

arrows(0,0,11,0,code=2, xpd = TRUE, length=.10) 

text(11.5,0,xpd=TRUE,expression(italic(x))) 

arrows(0,0,0,1.15,code=2, xpd = TRUE, length=.10) 

text(0,1.25,xpd=TRUE,expression(italic(F(x)))) 

mean_x=4 

abline(v=mean_x) 

text(mean_x,-.12, expression(italic(mu)),xpd=TRUE,cex=1) 


