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Abstract

In this paper minimax estimation of the scale parameter in a class of life-time distributions
for Squared Log Error, Modified Linear Exponential (MLINEX) and Quadratic loss
functions have been studied. A study on risks of the estimators are also given.
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1. Introduction

The class of life-time distributions introduced by Prakash and Singh [7] is an
important life-time distribution in survival analysis. Suppose a random variable X
follows the distribution presented by a class of probability density function with
the parameter 6 and two known positive quantitiesb and ¢ is given as
c 1 bc-1 - 2x
f(X=x%x;0)=——x"% ¢ ; x20, 6>0,b>0,¢>0, (1.1)
I'b o
It can be seen that for different values of b and ¢ the model (1.1) reduces to
negative exponential distribution, two-parameter gamma distribution, Erlang
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distribution, two-parameter Weibull distribution, Rayleigh distribution and
Maxwell distribution.

The various properties and estimation of different life-time distributions such as
exponential distribution, Weibull distribution, two-parameter gamma distribution
and Maxwell’s velocity distribution have been studied by Abu-Talebet. et. al. [1],
Ahmed et. al. [2], Sonand Oh [8] and Tyagi and Bhattacharya [9] etc. Prakash and
Singh [7] discussed the Bayesian shrinkage estimation in a class of life testing
distribution. Podder [6] studied the risks of the Bayes’ estimators for the
parameter of the distribution in (1.1) under squared-error and MLINEX loss
functions.

The purpose of this paper is to find the minimax estimators of the scale parameter
in a class of life-time distributions for squared log error, MLINEX and quadratic
loss functions. In addition, a study on their risks have been also done.

2. Preliminary Theory

Suppose X is a random variable whose distribution depends on k parameters
6,,0,,.., 6, and let QQ denotes the parameter space of possible values of 4, the

k - dimensional vector (6,,6,.,.., 6,). Now consider the general problem of

estimating the unknown parameter @, from the results of a random sample of n
observations, by the methods of Bayes’ and minimax estimation.

Denoting the sample results X,, X, ..., X.by x, let # be an estimator of ¢ and also

let L(é,H) be a loss function, the loss incurred by taking the value of @ to be 4.

The risk function R(é,e) is the expected value of the loss function with respect to
the sample observations.

If 1(6]x) is the likelihood function of & given the sample X and 7z(9) be the

prior density of @, then combining 1(6|x) and z(0), it produces the posterior
distribution P(Hl X) though the Bayes’ theorem as

P(] X)=|(9|X—)g(m, 2.1)

p(x)
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where p(x)=[1(6] x)g(0)d6 -

Q
Hence the Bayes’ estimator 8 of @ will be a solution of the equation

oL ~
Iaé P(0|x)do =0, (2.2)

Q

where L stands for loss function and assume that the sufficient regularities
conditions prevail to permit differentiation under the integral sign.

Here, we consider the following types of the loss functions as

i) L(0.0)=(no-mof = [In[gﬁz; 2.3)
i) L,(0.0)= wl[gT _ yln[?] —1]; y20,@>0; 2.4)

i) L, (é,e):(é%oe] | 2.5)

The loss function L, is called squared log error proposed by Brown [3], is
balanced and lim L(é,@)zoc as @ —0 or « . This loss is not always convex, it is

convex for ¢ <¢ and concave otherwise, but its risk function has a unique
0

minimum with respect to 0.
Again the loss function L, is a modified linear-exponential (MLINEX) which is

an asymmetric one. If ¢ _;, then L(é,@): 0, writing R :g, the relative error L(R)
0

IS minimum at R =1. If we write D:mR:m(‘gJ, then L(R) can be expressed as
0

the same form of LINEX (Linear-exponential) loss function, introduced by Varian
[10].
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The loss function L, is called quadratic loss function which is asymmetric one.

The derivation depends primarily on a theorem which is due to Lehmann [5] and
can be stated as follows.

Theorem 2.1: Letz ={F,;0 € ®} be a family of distribution functions and D be

a class of estimators of #. Suppose that 6~ € D is a Bayes’ estimator concerning
to a prior distribution 72'(9) on the parameter space © . If the risk function

R(5*, 9)= constant on ©, then & is a minimax estimator for .

3. Main Results

Theorem 3.1: Let X,,X,,---,X, be a random sample of size n from the
distribution in (1.1). If @ has lJeffrey’s non-informative prior density

7[(9)06%; 6>0, then

@) 6] =Te *™ js the minimax estimator of parameter @ for squared log

A

error loss function of the type Ll(é,H):(lné—ln 0)2 :(In SJ , Where

—

(b) &, :[r(r(;b))ij is the minimax estimator of parameter dfor MLINEX
nb+y

ANY A
loss function of the type Lz(é, 6?)= w[(g} —y In(%)l]; y#0,@>0.

e T
C) 6, =
© 6 nb+1

is the minimax estimator of parameter @ for quadratic loss

A 2
function of the type Ls(é, g)z (9%09] , where T=3%"X,°.

i=1
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Proof. Part (a): It is enough to show that the estimator 6, =Te~ vm) s the
Bayes’ estimator for parameter @, in a class of life-time distributions in (1.1), with

constant risk under the prior density 7(9) «c %; 0>0.

Let us consider the case of estimating the single parameter #in a class of life-time
distributions in (1.1). The likelihood function is given by

o ([ T | e ™

i=1

e, (3.1)

where K:[ij [Tx"" and T=>x°.
Fb i=1 i=1

The maximum likelihood estimator of @ is lb, where T is defined above. T is also
n

a complete sufficient statistic for 6. It is to be noted that the part of the likelihood
function which is relevant to Bayesian inference on the unknown parameter 6 is

1 -7

Since the parametric range in (1.1) isOto o, therefore according to the Jeffrey’s
rule of thumb, the Jeffrey’s prior becomes

ﬂ(@)oc%; >0, (3.2)

By combining equations (3.1) and (3.2), the posterior distribution of & given x

becomes as

T 1 T
ﬂ(el%):mweg, 6>0,T>0 , (33)
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The mean and variance of the posterior distribution in (3.3) are( bT ) and
np —
2
(-17(nb—2) respectively. Also the distribution in (3.3) gives
E(H‘7 | x): | 0‘77z(9| x)de
0
_F(nb+7)i
= T(b) T/ (3.4)
And E(ln 9| §)=_[In e;z(0| g)d&
0
-I-nb oc 1 T
= Ing e ?do
F(nb)-([ 0nb+1
. . 1
Using a transformation, ¥ =5T , then
E(lno|x)=InT -y (nb) (35)

where w(nb)= Fr ((:E)) and r’(nb)=Tln ye'y™idy, the differentiation of r(nb) with
0

respectto n.

The Bayes’ estimator of @ for squared log error loss function in (2.3) using (2.2) is
6, = exp[Ee (In 0| >_<)J (3.6)
where Ee“ x) stands for posterior expectation.

Using (3.5), the relation (3.6) gives
6 =Te v
Therefore, it is enough to show that the risk of él* IS constant.

Again, Rl(él*, 6?): E[In 6" —In 9]2
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:V(In él*)— [E(In él*)— In 9]2
=V(nT)+[E(INT)-In & —w(nb)f (3.7)
Since xfollows a class of life-time distributions in (1.1) with parameter ¢, then

T= Zn:xf is distributed as a gamma distribution with parameters nb and 1, i. e,
i-1 o

T ~ Gamma (nb, 2)

The probability density function of T is

1
fT0)=—L L e a'twi 720 950 (3.8)
(nb) 6"
The mean and variance of the distribution in (3.8) are nb@ and nbé? respectively.
The distribution in (3.8) also gives

_ F(nb+ 7) )

E(InT)=TInT f(T;0)dT

1 1% =
= INTe ¢ T™dT,
r(nb)ent’!” °

Further using a transformation y = %T , we have

1
r'(nb)

E(InT)= (In@+Inyey™ dy

oe— 3

=In6+w(nb), (3.10)

Similarly,
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E(nTY = [(nT) £(T;0)dT

-1 J(In0+ln y)ey™*dy
0

8

=(In6) +2In 8 w(nb)+ y™dy - (3.11)

O

Again

-1

w(nb)T'(nb)=T"(nb)

= w(nb)T(nb) = T Inye™y™dy. (3.12)
0
Differentiating the equation in (3.12) with respect to n, we have
y/(OB)T () + (D) ()= [ (n y e Yy .
0
Therefore,

y'(nb)T'(nb)+ w(nb)I"(nb) =_|' (InyYey™*dy
0

= I('” yfey™dy =y'(nb)+y*(nb) (3.13)

T(nb)s
Hence, we have from (3.11), using (3.13)
E(INT) =(In @) + 2In 8w (nb)+y'(nb)+w?(nb). (3.14)
And
VInT)=E(nTY -[E(INT)f

=y'(nb) (3.15)
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Substituting the relation (3.10) and (3.15) in (3.7), we have
R(6.0)=y'(nb); (3.16)

which is a constant with respect to &, as b and n are known and independent of
0.

So, from the Lehmann’s theorem it follows that él* =Te_"’(”b), is the minimax

estimator of the scale parameter &in a class of life-time distributions for squared
log error loss function in (2.3).

Part (b): The Bayes’ estimator for @ under the MLINEX loss function in (2.4) is

1

0, = [Eg(e-y | >_<)]7 (3.17)
Using (3.4), we have from the relation (3.17)
r'(nb)

0, {m} T =KT, (3.18)

1
where K =| _L(b) |7 ang T=Yx".
F(nb+7/) i—1

Now the risk function of 92* under the MLINEX loss function is given by
R,(6,".0)=E|L(@, .0)

:w[i E(éz*)y 4 E(In éz*)+ 7In 6’—1}

KJ’
a{E(Ty)—yE(lnT)—ylnK+y|n9—1} (3.19)
Using (3.9) and (3.10), the relation (3.19) gives

R, (é;, 0): w{ln Clnb+y) yn//(nb)} ; (3.20)

'(nb)
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which is a constant with respect to @, as b and n are known and independent of
0.

1
So, from the Lehmann’s theorem it follows that g, = I'(nb) "1, is the
r(nb+y)

minimax estimator of the scale parameter & in a class of life-time distributions
under MLINEX loss function.

It has seen that when y =1, then 4" :lbis the maximum likelihood estimator of
n

—

0 and when y =—1, then 8" = is the mean of the posterior distribution in

(nb-1)

(3.3)

Part (c): The Bayes’ estimator for @ under quadratic loss function in (2.5) is

I (3.21)
6. = -4, .
POE07 X

where Eg(.| x) stands for posterior expectation.
Using (3.4), the relation (3.21) gives
- 1

Now the risk function of 93* under the quadratic loss function is given by
Rs(és*ﬁ): E[Ls(é;,ﬁ)J

:é e, -of
= %[V (és*)Jr {E(és*)_ 9}2}

_1] 1 1 ’
_Gzl(nb+1)2V(T)+{(nb+l) E(T)‘Q} }
1

_ ; 3.23
nb+1 ( )
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which is constant with respectto &, as b and n are known and independent of 4.

1

T, is the minimax

So from the Lehmann’s theorem, it follows that 6, =

(nb+1)
estimator of the scale parameter &in a class of life-time distributions under the
quadratic loss function.

The following tables give the risks of the estimatorsR,(6,), R,(d,") and Rr,(6,")

under Squared log error, Modified linear-exponential (MLINEX) and Quadratic
loss functions for different values of sample size n, by and @ .

Table 1: The risks of Squared log error, MLINEX and Quadratic loss functions
for different sample sizes whenb =1, y #0 and@ =1

R.(6; )

R(6,")

"R

y=-3

y=-2

y=-1

y=1

y=2

y=3

0.21875

1.35583

0.53768

0.12500

0.09814

0.37861

0.81322

0.16667

10

0.10494

0.53576

0.22889

0.05556

0.04980

0.19492

0.42705

0.09091

15

0.06888

0.33540

0.14554

0.03571

0.03328

0.13110

0.28954

0.06250

20

0.05125

0.24424

0.10670

0.02632

0.02498

0.09875

0.21903

0.04762

25

0.04080

0.19207

0.08423

0.02083

0.01999

0.07920

0.17615

0.03846

Table 2: The risks of Squared log error, MLINEX and Quadratic loss functions

for different sample sizes when ,_3, y #0 and @ =2.
2

n 5" R, 07 A
R(6) y=-383|yr=-2|y=-1|y=1 | y=2 |y=3 R3(03)
5 ] 0.14201 1.53110 | 0.64180 | 0.15385 | 0.13236 | 0.51504 | 1.12017 | 0.11765
10 | 0.06888 | 0.67080 | 0.29107 | 0.07143 | 0.06656 | 0.26219 | 0.57907 | 0.06250
15 | 0.04543 0.43007 | 0.18828 | 0.04651 | 0.04441 | 0.17580 | 0.39053 | 0.04255
20 | 0.03389 | 0.31655 | 0.13915 | 0.03448 | 0.03332 | 0.13222 | 0.29462 | 0.03226
25 | 0.02702 0.25046 | 0.11035 | 0.02740 | 0.02666 | 0.10595 | 0.23653 | 0.02597
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Table 3: The risks of Squared log error, MLINEX and Quadratic loss functions
for different sample sizes when b=2, y #0 and @ =3.

N R:(0,) .
" RE) y==|r=-2 7=—1272=1 y=2 |y=3 R3(03)

5 10.10494 | 1.60729 | 0.68668 | 0.16667 | 0.14941 | 0.58476 | 1.28114 | 0.09091

10 | 0.05125 | 0.73272 | 0.32010 | 0.07895 | 0.07493 | 0.29624 | 0.65710 | 0.04762

15 | 0.03389 | 0.47482 | 0.20872 | 0.05172 | 0.04998 | 0.19833 | 0.44193 | 0.03226

20 | 0.02531 | 0.35124 | 0.15485 | 0.03846 | 0.03749 | 0.14906 | 0.33292 | 0.02439

25 | 0.02020 | 0.27871 | 0.12308 | 0.03061 | 0.03000 | 0.11940 | 0.26706 | 0.01961

Table 4: The risks of Squared log error, MLINEX and Quadratic loss functions
for different sample sizes when b=3, y #0 and @ =4.

A%

N R (6) .
" RO e e et (=2 [7=8 | Rl

5 10.06888 | 1.34161 | 0.58215 | 0.14286 | 0.13311 | 0.52438 | 1.15815 | 0.06250

10 | 0.03389 | 0.63310 | 0.27830 | 0.06897 | 0.06664 | 0.26444 | 0.58924 | 0.03226

15 | 0.02247 | 0.41440 | 0.18287 | 0.04545 | 0.04444 | 0.17679 | 0.39517 | 0.02174

20 | 0.01681 | 0.30802 | 0.13617 | 0.03390 | 0.03333 | 0.13278 | 0.29727 | 0.01639

25 | 0.01342 | 0.24510 | 0.10848 | 0.02703 | 0.02667 | 0.10631 | 0.23825 | 0.01316

4. Discussion

(a) The estimators 6, , 6, and é; are the minimax estimators of scale parameter
@in the following distributions for loss functions L,in (2.3),L, in (2.4) and L,in
(2.5) respectively :

(i) negative exponential distribution when b =1, ¢ =1; (ii) two-parameter gamma
distribution when b =b, ¢ =1; (iii) Erlang distribution whenb = positive integer,
c=c; (iv) two-parameter Weibull distribution when b=1 c=c; (v) Rayleigh
distribution when b =1, ¢ =2 and (vi) Maxwell distribution when b =3/2,c=2.
(b) When b =1, the risks of the estimators corresponding to their respective loss
functions such as Squared log error, MLINEX and Quadratic, are the same for

scale parameter @of negative exponential, two- parameter Weibull and Rayleigh
distributions.
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(c) The risks of the estimators involved 6, , &,  and 6, are known quantitiesn and

b only but free from c. These risks are also independent of scale parameter ¢ and
hence constant.

(d) The risks of the estimators decrease among themselves when sample size n
increases, providedb >0,y #0and @ >0.

(e) When b >0, the risk Rs(é;) is smaller than Rl(él*) for any sample sizen. The

risks of the estimators 6, and 6, are also free fromy = 0and @ >0.

(f) For fixed sample size, b > 0and @ > 0the risk R, (éz*) increases aty <-1 and
y =1 only.

(g) If sample size n increases,b=1and @z =1, Rz(éz*) is minimum at y =-1 and
y =1 but maximum at ¥ < -1 and y >1among the risks of the estimators.

(h) For fixed sample size, b:%and @ =2 the relation Rg(és*)< Rz(éz*)< Ri(el)
holds when » =1but Ry(6, )< R (@ )<R,(,) holds only when » <-1and y >1.

(i) When b>2 , @#>0 and sample sizes are fixed, then the relation
R3(é;)< Rl(él*)< RZ(éZ*) holds only at y <-1and y >1 respectively.
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