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Abstract 

In repeated Bernoulli trials, unified theory was developed almost 70 years back to 

examine the scope of ‘sampling plans’ providing unbiased estimation of the Bernoulli 

parameter ‘p’ and its functions. We review the literature and provide extension to 

trinomial distributions. Whereas Wald’s SPRT is discussed in inference courses, rarely 

we find discussions on sequential estimation of the parameter ‘p’ and its functions. Some 

illustrative examples have been provided to demonstrate elaborately the underlying 

concepts and computations. 
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1. Introduction 

1.1. A Historical Account 

We will deal with the simplest and elementary experiment of coin tossing with 

𝑃[𝐻] = 𝑝 and 𝑃[𝑇] = 𝑞 = 1 − 𝑝, 0 < 𝑝 < 1. Further, we will work in the usual 

framework of “Repeated Bernoulli Trials [RBTs]”.  According to [Late] Professor 

D Basu, whatever we have usually learnt/taught in the framework of RBTs may be 

labelled as those based on “Direct Enumeration/Computation” of probability.  The 

real challenge altogether skips attention of the learners.  

His landmark question reads as: “Generate an event with probability (𝑝) = √𝑝 .”   

We refer the readers to a paper by Sinha and Banerjee (1979) dealing with 

𝑓(𝑝) = 𝑝𝛼 , 𝛼[rational] > 0. There is a vast literature on this topic, spanning over 

a long period - since 1950’s, or even earlier.  

Several key references are: Girshick, Mosteller and Savage (1946), Wolfowitz 

(1946), Lehmann and Stein (1950). Blackwell and Girshick (1954), DeGroot 

(1959), Gupta (1967), Sinha and Sinha (1975, 1992), Sinha and Bose (1985), Bose 

and Sinha (1984), Sinha (1991), We hasten to add an informative Project Report 

[Tarafdar (2016)] in the list of references at the end as an unpublished document. 

To a beginner in this area, some of the references may serve as review articles –

laying the foundation.  

Before we turn to the basic notations and nomenclature, following Basu, we are 

tempted to cite two examples of 𝑓(𝑝) as (i) f(𝑝) = 3.5𝑝𝑞 or, as (ii) 𝑓(𝑝) = 12 𝑝2𝑞2 

with not-so-immediate-solutions towards generating respective underlying events. In 

each case, we are required to find a solution to the twin pair (𝑛, 𝐸𝑛) where ‘𝑛’ 

denotes the required number of Bernoulli trials and 𝐸𝑛 is the underlying event for 

which 𝑃[𝐸𝑛] = 𝑓(𝑝), 0 < 𝑝 < 1.  Another related problem is to arrive at the 

UMVUE of 𝑓(𝑝), say 𝑓(𝑝), which is also proper, i.e., 0 ≤ 𝑓(𝑝) ≤ 1 [since 𝑓(𝑝) is 

itself proper i.e.,  0 ≤ 𝑓(𝑝) ≤ 1 for  0 ≤ 𝑝 ≤ 1]. A little reflection shows that 𝑓(𝑝) 

is not necessarily so, irrespective of the choice of 𝑓(𝑝) and the underlying data-

generating scheme so adopted!   

1.2. Notations and Nomenclature   

Let 𝑍𝑖 , 𝑖 = 1,2, ⋯ be an i.i.d sequence of Bernoulli variates with 𝑃[𝑍𝑖 = 1] = 𝑝 

and 𝑃[𝑍𝑖 = 0] = 1 − 𝑝 = 𝑞 (say). We assume 𝑝 ∈ (0,1). Any realization of this 
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process can be exhibited as a lattice path in the (𝑋, 𝑌)-plane, where a particle 

moves from the origin one step to the right along the X-axis if the incoming 

observation is 0 [Tail] and one step above along Y-axis if it is 1 [Head]. A 

stopping rule can be viewed as a sequence of functions 𝜑𝑘, where 𝜑𝑘 is a function 

of (𝑍1, 𝑍2, ⋯ , 𝑍𝑘). Each 𝜑𝑘 take values 0 or 1. Given an integer ‘k’ and the set 

(𝑧1, 𝑧2, ⋯ , 𝑧𝑘), 𝜑𝑘(𝑧1, 𝑧2, ⋯ , 𝑧𝑘) = 1 indicates that we take one more observation 

i.e., (k+1)th observation and 𝜑𝑘(𝑧1, 𝑧2, ⋯ , 𝑧𝑘) = 0 indicates that we stop at this 

kth stage . A point 𝛼 = (𝑥, 𝑦) is a continuation point if there exists one sequence 

of realizations (𝑧1, 𝑧2, ⋯ , 𝑧𝑥+𝑦) leading to 𝛼 such that 𝜑𝑗(𝑧1, 𝑧2, ⋯ , 𝑧𝑗) = 1 ∀𝑗 ≤

𝑥 + 𝑦. A point 𝛼 = (𝑥, 𝑦) is a boundary point if there exists one sequence of 

realizations (𝑧1, 𝑧2, ⋯ , 𝑧𝑥+𝑦)  leading to 𝛼  such that 𝜑𝑗(𝑧1, 𝑧2, ⋯ , 𝑧𝑗) = 1 ∀𝑗 <

𝑥 + 𝑦 and 𝜑𝑥+𝑦(𝑧1, 𝑧2, ⋯ , 𝑧𝑥+𝑦) = 0 . A point may be a boundary point or a 

continuation point depending on the path. A point is an accessible point if it is 

either a boundary point or a continuation point. Points which are not accessible are 

regarded as inaccessible points. For any boundary point 𝛼 = (𝑥, 𝑦), 𝑃(𝛼) denotes 

the probability of stopping at 𝛼 and is given by  

𝑃(𝛼) = 𝐾(𝛼)𝑝𝑦𝑞𝑥, say 

where 𝐾(𝛼) is the number of accessible paths from the origin to the point 𝛼.  

A stopping rule yielding the boundary points together with their probabilities 

𝑃(𝛼) shall be called a sampling plan 𝑃.  

 

Figure 1: Boundary points 

In Figure 1, red coloured points are boundary points and a motion of the random 

particle is shown along a free path. Accessible and inaccessible points depend on 

the sampling plan; hence they are not shown in the above figure. 
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1.2.1. Description of a Bernoulli Sampling Plan 

We consider a coin tossing experiment with constant success probability ′𝑝′ . 

Suppose the coin is tossed a given number, say n, of trials and then stopped, 

irrespective of the results obtained. We will denote the number of heads observed 

in the experiment by ′𝑦′ and the number of tails observed in the experiment by ′𝑥′  

so that  𝑥 + 𝑦 = 𝑛. This is referred to as Binomial (𝑛) sampling plan. In Figure 2, 

we exhibit such a plan. 

 

Figure 2: Binomial (n) Sampling Plan 

Here the line 𝑥 + 𝑦 = 𝑛  is the absorbing boundary and the red circled points 

[(𝑛, 0) to (0, 𝑛)] on the absorbing boundary are called the boundary points. The 

points falling inside the boundary are called free points or the accessible points 

and those falling beyond the absorbing boundary are known as inaccessible points. 

Note that such descriptions are being attributed to the points in the (X, Y)-plane 

with respect to the specific sampling plan 

Now consider a different sampling plan. Suppose the coin tossing experiment is 

performed until ‘𝑘’ heads appear. Then all the points lying on the line 𝑦 = 𝑘 will 

be the boundary points for this plan. The plan diagram is given in Figure 3. This 

plan is referred to as Inverse Binomial Sampling (𝑘) Plan.   
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Figure 3: Inverse Binomial Sampling (k) Plan 

In the above figure the line y=k is the absorbing boundary and the red circled 

points are the boundary points. There are an infinite number of boundary points on 

this line. 

Now, we go through some definitions that are related to the notions of open and 

closed sampling plans. 

1.2.2. Definition of closure of a sampling plan 

Let 𝛼 = (𝑥, 𝑦) ∈ 𝐵 be a typical boundary point where 𝐵 = the collection of all the 

boundary points of the plan P. Let 𝑃(𝛼) be the probability of reaching 𝛼 starting 

from the point (0,0).  

Then, 𝑃(𝛼) = 𝑃(𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔  𝛼) = ∑ 𝑝𝑦𝑞𝑥 , where the summation is over all the 

accessible paths from (0,0) to 𝛼 = (𝑥, 𝑦). We denote by 𝐾(𝛼)the number of such 

accessible paths from (0,0) to 𝛼 = (𝑥, 𝑦). Note that 𝐾(𝛼) ≤ (
𝑥 + 𝑦

𝑥
) for every 

pair (𝑥, 𝑦). 

A sampling plan is said to be closed iff ∑ 𝑃(𝛼)𝛼∈𝐵 = 1  for all 𝑝. So, the two 

plans discussed above are simple and well-known examples of closed sampling 

plans. In a closed sampling plan, an experiment terminates with probability 1. 

Here the boundary point 𝛼 and the route that the particle has traversed to reach 𝛼 

comprise the data for the experiment. It is to be noted that only closed sampling 

plans are of interest to an experimenter. A sampling plan which is not closed, is 

said to be ‘open’. Open sampling plans are not of any practical interest. We will 

focus on the closed sampling plans in the sequel. 
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1.2.3. Concept of path counting 

Recall 𝐾(𝛼) = the number of accessible paths from (0,0)to 𝛼 . If all the paths 

from (0,0)  to 𝛼  are free / accessible paths, then 𝐾(𝛼) = (
𝑥 + 𝑦

𝑥
) . In case of 

binomial (𝑛) sampling plan, all paths from (0,0) to 𝛼=(x, y) are free paths when 

𝑥 + 𝑦 = 𝑛, the binomial plan parameter. But in inverse binomial sampling (𝑘) 

plan with ‘parameter 𝑘’, all paths from (0,0) to 𝛼=(x, k) are not free. Also in 

many cases, the scenario may not be so easy. All the paths may not be free paths. 

That means, for a boundary point 𝛼=(x, y), the number of free paths may not be 

equal to (
𝑥 + 𝑦

𝑥
); it may be much less than (

𝑥 + 𝑦
𝑥

) in general terms. Intuitively, 

it would be of interest to get the value of 𝐾(𝛼) for a given sampling plan and for a 

given boundary point 𝛼. 

The calculation of the value of 𝐾(𝛼)  may be done by path-counting formula 

which is deeply combinatorial in nature. For non-standard sampling plans, we 

cannot avoid making a count of 𝐾(𝛼) since closure of the plan is to be verified, to 

start with. Here is an excellent book in this direction. Mohanty (1979). 

Towards construction of UMVUEs of parameters of interest, one unified approach 

has been suggested in the literature. We skip the verification of the fact that in the 

context of closed sampling plans arising out of Repeated Bernoulli Trials, the 

boundary point 𝛼  and the path-counting number 𝐾(𝛼)  jointly define minimal 

sufficient statistics. Vide Sinha and Sinha (1992).  

 

1.2.4. Concept of a Pull-Down plan 

In 1-Step Pull-Down plan, we consider the number heads to be one unit less. That 

means, we pull down each boundary point of the plan P one unit along Y-axis 

towards X-axis. For example, the diagram of the Binomial Sampling (n) Plan 

would be transformed to the one in Figure 4 after 1-step pull-down as mentioned 

above. 
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Figure 4: 1-Step Pull-Down Binomial Sampling (𝑛) Plan 

Here the new absorbing boundary (solid line) is 𝑥 + 𝑦 = 𝑛 − 1 and the red circle 

points [(𝑛 − 1,0)  to (0, 𝑛 − 1)]  on the new absorbing boundary are the new 

boundary points. We denote this sampling plan by 𝑃−1(𝛼−1) , where 𝛼−1 =
(𝑥, 𝑦 − 1) are the new boundary points. It is readily seen that 𝑃−1 is closed. It is to 

be noted that due to 1-step pull down, the point (𝑛, 0)  sank down below the X-

axis. This concept generalizes naturally to Pull-Down Plans of 2- or more Steps. 

In case of 1-Step Pull-Down plan for the Inverse Binomial Sampling (k) Plan, the 

coin tossing experiment is performed until 𝑘 − 1  heads appear. Here we pull 

down the boundary line one unit along Y-axis towards X-axis. Therefore, all 

points lying on the line 𝑦 = 𝑘 − 1 are the new boundary points (Figure 5). Here   

𝑃−1 is closed, too.  

 

Figure 5: 1-Step Pull-Down Inverse Binomial Sampling (𝑘) Plan 
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In Tarafdar (2016), it is demonstrated that for any arbitrary closed sampling plan 

P, the corresponding 1-Step Pull-Down Plan 𝑃−1  is also necessarily closed. 

Intuitively, this seems to be evident. 

1.2.5. Concept of a Push-up plan 

In this situation we consider the number heads to be one unit more. In other 

words, the plan is pushed-up one step in an analogous fashion. Then the diagram 

of the Binomial Sampling (𝑛) Plan will look like as indicated in Figure 6. 

 

Figure 6:1-step Push-Up Binomial Sampling (𝑛) Plan 

Here the absorbing boundary is on the line  𝑥 + 𝑦 = 𝑛 + 1  and the red circle 

points [(𝑛, 1) to (0, 𝑛 + 1)] on the absorbing boundary are the boundary points. 

That means, the point (n+1, 0) is excluded from 𝐵+1. We denote this sampling 

plan by 𝑃+1(𝛼+1) , where 𝛼+1 = (𝑥, 𝑦 + 1)  are the new boundary points. We 

readily observe that  𝑃+1 is not closed, because, in the push-up plan, the moving 

point can reach (𝑛, 0) with probability 𝑝𝑛  and thereafter it can move one more 

step along X-axis with probability 𝑝. Hence, under 𝑃+1, the particle will not stop 

with probability 1. 

In case of Push-Up plan for Inverse Binomial Sampling (k) Plan, the coin tossing 

experiment is performed until 𝑘 + 1 heads appear. Therefore, all the points lying 

on the line 𝑦 = 𝑘 + 1are the boundary points (Figure 7). In this case, the plan 𝑃+1 

is indeed closed. 
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Figure 7: 1-step Push-Up Inverse Binomial Sampling (k) Plan 

Therefore, it is found that  𝑃+1  is not always necessarily closed, although 𝑃 is 

closed to start with. 

However, it can be argued that once 𝑃+1  is closed, so is any plan of the type 

𝑃+𝑐 , 𝑐 = 2, 3, 4, ⋯ . On the other hand, though 𝑃−1 is closed (for 𝑛 > 1), closure 

may not hold for 𝑃−2 or 𝑃−3 etc. i.e., for higher negative integer values of n. 

 

2. Unbiased Estimation 

2.1. Unbiased Estimation of 𝒑 

For an arbitrary closed sampling plan, it is not very obvious to suggest the nature 

of an unbiased estimate 𝑝 with the usual procedure of estimation. Here pull-down 

plan concept can effectively be used for unbiased estimation of  𝑝. Pull-down plan 

says: pull the whole set of boundary points of the plan by one step along Y-axis 

towards X-axis.  

Now since a pull down sampling plan 𝑃−1 is closed, we can write 

∑ 𝑃−1(𝛼−1)𝛼−1
=1. 

Again, 𝑃−1(𝛼−1) = 𝐾(𝑥, 𝑦 − 1)𝑝𝑦−1𝑞𝑥. 

So, ∑ 𝐾(𝛼−1)𝑝𝑦−1𝑞𝑥
𝛼−1

= 1 . 

We rewrite this as  

∑ [𝐾(𝛼−1)/𝐾(𝛼)]𝐾(𝛼) 𝑝𝑦𝑞𝑥
𝛼−1

= 𝑝. 
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Since ∑𝛼−1
and ∑𝛼 are 1-1 functions, we can replace  ∑𝛼−1

by  ∑𝛼 in the above. 

This gives an unbiased estimate of 𝑝 as �̂� = 𝐾(𝛼−1)/𝐾(𝛼). 

So, an estimate of ‘𝑝’ is given by the ratio of the two path counts. 

For instance, in case of binomial sampling (n) plan where  𝑥 + 𝑦 = 𝑛, 𝐾(𝛼) = (𝑛
𝑥

) 

and 𝐾(𝛼−1) = (𝑛−1
𝑥

) and  �̂� = 𝑦/𝑛, which is the usual estimator of 𝑝. Note that 

‘𝑦’ denotes the head count in the plan. 

Similarly, in case of inverse binomial sampling (k) plan, we apply 1-step pull-

down approach and derive: 𝐾(𝛼) = (𝑘+𝑥−1
𝑥

) and K(𝛼−1) = (𝑘+𝑥−2
𝑥

), which gives 

�̂� = (𝑘 − 1)/(𝑥 + 𝑘 − 1). 

2.2. Unbiased Estimation of 𝒑−𝟏 

Let 𝑃 denote the original closed sampling plan. After 1-step push-up, the new plan 

is denoted by 𝑃+1 with 𝛼+1 as a typical boundary point for 𝑃+1(𝛼 → 𝛼+1) such 

that 𝛼+1 = (𝑥, 𝑦 + 1)  and  𝐾(𝛼+1)  as the number of accessible paths from 
(0,0) to  𝛼+1. Suppose the original plan P is so chosen that the 1-step push-up 

plan 𝑃+1  is also closed.  Then 
1

𝑝
 can be estimated as 𝐾(𝛼+1)/𝐾(𝛼). The proof 

follows readily.  

Since ∑ 𝐾(𝛼+1) 𝑝𝑦+1𝑞𝑥
𝛼+1∈𝐵+1

= 1 (as 𝑃+1 is assumed to be closed) 

⇒ ∑ [𝐾(𝛼+1)/𝐾(𝛼)]𝐾(𝛼) 𝑝𝑦𝑞𝑥

𝛼+1∈𝐵+1

=
1

𝑝
 

⇒
1

𝑝

̂
= 𝐾(𝛼+1)/𝐾(𝛼). 

As was mentioned before, 𝐾(𝛼) values are usually calculated by path-counting.  

Further by 2-step push-up plan we can find estimate of 
1 

𝑝2 
 as 𝑘(𝛼+2)/𝑘(𝛼) . 

Proceeding in this way unbiased estimate of any negative integer power of 𝑝 can 

be derived.  

It turns out that while binomial sampling (𝑛 ) plans do not provide unbiased 

estimates of 1/𝑝  etc, all inverse binomial sampling (𝑘 ) plans do provide the 

estimates. 

However, the inverse binomial sampling (𝑘) plan does not allow us to estimate  
1

𝑞
,

1

𝑞2 , ⋯ directly. 

Remark 1. Bose and Sinha (1984) proved that closure of a push-up plan 𝑃+1 is 

necessary for unbiased estimation of 1/p.  
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2.3. An illustration of two sampling plans other than the traditional  

       ones: Unbiased Estimation of 𝒑,  𝒒 and 𝒑𝒒 

Plan 1: A coin tossing experiment is performed until 3 heads or 5 tails appear. 

 

Figure 8: Boundary points for 3 Heads or 5 Tails 

For such a sampling plan (Figure 8) the boundary points 𝛼, 𝛼−1, 𝑘(𝛼), 𝑘(𝛼−1) 

and �̂� for different values of 𝛼 are given in Table 1. 

Table 1: Estimation of 𝑝 

𝛼 𝛼−1 𝑘(𝛼) 𝑘(𝛼−1) �̂� = 𝑘(𝛼−1)/𝑘(𝛼) 

(5,0) - 1 0 0 

(5,1) (5,0) (
6
1

) − 1 = 5 1 1/5 

(5,2) (5,1) (
6
2

) = 15 (
6
1

) − 1 = 5 1/3 

(4,3) (5,2) (
6
4

) = 15 (
6
2

) = 15 1 

(3, 3) (3,2) (
5
3

) = 10 (
4
2

) = 6 3/5 

(2, 3) (2,2) (
4
2

) = 6 (
3
2

) = 3 1/2 

(1, 3) (1, 2) (
4
1

) − 1 = 3 (
3
1

) − 1 = 2 2/3 

(0, 3) (1, 2) 1 1 1 

 

The closure properties are readily verified. 

Analogously, we can provide an unbiased estimator of q. We skip this part. Below 

we take up the case of pq and straightaway furnish the results by referring to 

doubly pulled plan 𝑃[−1,−1] with boundary points denoted by (𝛼−1
∗∗ ).  



 

 

 

 

 

 

 

68                                      International Journal of Statistical Sciences, Vol. 20(2), 2020 

 

Table 2: Estimation of 𝑝𝑞 

Boundary points 𝑘(𝛼) 𝑘(𝛼−1
∗∗ ) 𝑝�̂� = 𝑘(𝛼−1

∗∗ )/𝑘(𝛼) 

(5,0) 1 0 0 

(5,1) (
6
1

) − 1 = 5 1 1/5 

(5,2) (
6
2

) = 15 (
5
1

) − 1 = 4 4/15 

(4,3) (
6
4

) = 15 (
4
2

) = 6 2/5 

(3, 3) (
5
3

) = 10 (
3
2

) = 3 3/10 

(2, 3) (
4
2

) = 6 (
3
1

) − 1 = 2 1/3 

(1, 3) (
4
1

) − 1 = 3 1 1/3 

(0, 3) 1 0 0 

 

Plan 2: A coin tossing experiment is performed until 3 heads and 5 tails appear. 

 

Figure 9: Sampling plan to get 3 heads and 5 tails 

From Figure 9 we can find that the boundary points are- (a) (5,3), (b) (x,3); x≥6 

and (c) (5,y); y≥4. At first, we compute the values of 𝐾(𝛼). For 𝛼 = (5,3), all the 

paths are free paths from the point (0,0). Hence the value of 𝐾(𝛼) in this case will 

be (
5 + 3

5
) = (

8
5

) = 56. Now, for the type (b) boundary points, none of them can 

be reached from the left side. All of them must be reached only through the moves 

in the upward direction. Let, a typical boundary point of this type be 𝛼 = (𝑥, 3). 

Then it must be reached only through the point (x, 2). Hence in this case, the value 

of 𝐾(𝛼) is (
𝑥 + 2

2
). Similarly, the type (c) boundary points can be reached only 
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from the left side. Hence, for these types of the boundary points the value of 

𝐾(𝛼) is (
4 + 𝑦

4
). Closure of P is readily verified by the following arguments: 

(i) Boundary points defined by the Inverse Bernoulli plan described through 

“Y=3” contain all the boundary points [(x, 3); x ≥ 5] and path counts remain 

the same. 

(ii) Boundary points defined by the Inverse Bernoulli plan described through 

“X=5” contain all the boundary points [(5, y); y ≥ 3] and path counts remain 

the same.  

(iii) Further, the two plans in (i) and (ii) together comprise the given Plan in 

Figure 9 and the plan in Figure 8. 

(iv) Since Figure 8 refers to a closed plan, we necessary have closure of the plan 

in Figure 9. 

Now we discuss about estimation of ‘p’. For that, we perform one-step pull down 

method along Y-axis towards X-axis and for the revised plan, we compute the 

values of 𝐾(𝛼−1) using similar logic.Also the closure property of 𝑃−1 is readily 

verified.Therefore, Table 3 contains the boundary points 𝛼 , 1-step pull down 

boundary points 𝛼−1, 𝐾(𝛼), 𝐾(𝛼−1) and �̂� for different values of 𝛼. 

Table 3: Estimation of 𝑝 

Boundary points, 𝜶 𝜶−𝟏 𝒌(𝜶) 𝒌(𝜶−𝟏) �̂� = 𝒌(𝜶−𝟏)/𝒌(𝜶) 

(5,3) (5,2) 56 21 0.375 

(x,3);x≥6 (x,2);x≥6 (
𝑥 + 2

2
) (

𝑥 + 1
1

) 
2

𝑥 + 2
 

(5,y); y≥4 (5,y); y≥3 
(

4 + 𝑦
𝑦

) (
3 + 𝑦
𝑦 − 1

) 
𝑦

4 + 𝑦
 

 

Likewise, we can provide an unbiased estimate of q. We skip the details. 

Again if we want to estimate  𝑝𝑞, one way would be to estimate 𝑝  and 𝑝2 first 

using  1-step pull down and 2-step pull down sampling plans towards X-axis and 

then use the results to estimate 𝑝(1 − 𝑝) = 𝑝 − 𝑝2. Another way is to estimate it 

directly following 1-step pull down sampling plan towards X-axis and towards Y-

axis simultaneously. For such pull down sampling plan, we denote the new 

boundary points as 𝛼−1
∗∗ = (𝑥 − 1, 𝑦 − 1).  Therefore, we have to compute 𝐾(𝛼−1

∗∗ ) 

for the above three types of boundary points to estimate 𝑝𝑞. Here again we skip 

the details. 
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2.4. Miscellaneous results  

We start by stating an interesting result. 

Necessary and sufficient condition for the existence of a closed sampling plan to 

enable unbiased estimation of 𝑝𝑎𝑞𝑏 is that at least one point on the line 𝑥 + 𝑦 =
𝑎 + 𝑏 is an accessible/boundary point [𝑎 and 𝑏 being finite positive integers, say 
(𝑎, 𝑏) = (4,3)] 

It is clear from the above that application of appropriate pull-down plans serves to 

provide unbiased estimate of𝑝𝑎𝑞𝑏for a > 0 and b > 0.  

Now we consider the other three situations to suggest unbiased estimate of 𝑝𝑎𝑞𝑏, 

where 𝑎, or 𝑏, or both are negative finite integers. We confine to (a,b) = (+/-4, +/-3), 

excluding (4, 3).  

Case I: Estimation of 𝑝4𝑞−3 

Upon binomial expansion, we write 

 𝑝4𝑞−3 = 𝑞−3 − 4𝑞−2 + 6𝑞−1 − 4 + 𝑞 

In this situation following 1-step pull down sampling plan towards Y-axis 𝑞 can 

be estimated. Following 1-step push-up sampling plan along X-axis 𝑞−1 can be 

estimated, following 2-step push-up sampling plan 𝑞−2  can be estimated, and 

following 3-step push-up sampling plan 𝑞−3  can be estimated. Therefore, 

replacing those estimated values in the above expanded form  𝑝4𝑞−3  can be 

estimated. 

All the relevant ‘derived’ plans are closed under the plan in Figure 9. 
 

Case II: Estimation of 𝑝−4𝑞3 

It follows along analogous arguments. We skip the details. 

Case III: Estimation of 𝑝−4𝑞−3 

In this situation, it is not easy to estimate the parametric function since it cannot 

be expanded as a linear combination of finite number of powers of 𝑝 or 𝑞. To 

show more flexibility in the choice of a closed sampling plan to ensure this, let us 

consider a coin tossing experiment which is performed until 5 heads and 4 tails are 

observed. Then the boundary points are on the lines as in Figure 10. Now we 

follow 4-step push-up sampling plan along Y-axis and 3-step push-up sampling 

plan along X-axis. Then the new boundary points will be on the solid line of 

Figure 11. 
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Figure 10: Boundary points for getting 5 heads and 4 tails. 

 

Figure 11: New boundary points after 4-step push-up sampling plan along Y-axis 

and 3-step push-up sampling plan along X-axis. 

From Figure 10 we can find that the boundary points are- (a) (4,5), (b) (x,5); x≥5 

and (c) (4,y); y≥6. We have to estimate 𝜃 = 𝑝−4𝑞−3 at these three points using the 

formula 𝜃 = 𝑘(𝛼∗∗)/𝑘(𝛼), where 𝛼∗∗ are the new boundary points (a) (7,9), (b) 

(x,9); x≥8 and (c) (7,y); y≥10  (Figure 11).  

Table 4: Estimation of 𝜃 = 𝑝−4𝑞−3 

𝜶 𝒌(𝜶) 𝜶∗ 𝒌(𝜶∗) �̂� = 𝒌(𝜶∗)/𝒌(𝜶) 
(4,5) 126 (8,7) 6435 51.07 

(x,5);x≥5 (
𝑥 + 4

4
) (x,9); x≥7 (

𝑥 + 8
8

) (
𝑥 + 8

8
) (

𝑥 + 4
4

)⁄  

(4,y); y≥6 (
3 + 𝑦

3
) 

(7,y); y≥10 (
6 + 𝑦

6
) (

6 + 𝑦
6

) (
3 + 𝑦

3
)⁄  

Closure properties of relevant plans are readily verified. 
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3. Estimation of Parameters under Trinomial Setup 

3.1. Notations and Nomenclature 

Let (𝑊𝑖, 𝑖 = 1,2, ⋯) be a sequence of trials which have three possible outcomes 

with corresponding probabilities 𝑝, 𝑞, 𝑟  such that 0 < 𝑝, 𝑞, 𝑟 < 𝑝 + 𝑞 + 𝑟 = 1 . 

Then any experiment can be exhibited as a lattice path in the (𝑋, 𝑌, 𝑍)-space, 

where a particle moves from the origin one step to the right (along X-axis) if the 

incoming observation is an outcome having probability 𝑝, one step above (along 

Y-axis) if it is an outcome having probability 𝑞 and one step above (along Z-axis) 

if it is an outcome having probability 𝑟 . A stopping rule can be viewed as a 

sequence of functions 𝜑𝑘, where 𝜑𝑘 is a function of (𝑊1, ⋯ , 𝑊𝑘);   (𝑊1, ⋯ , 𝑊𝑘).  

being an i.i.d. sequence of Trinomial variates. Each 𝜑𝑘  takes the value 0 or 1; 

given ( 𝑤1, ⋯ , 𝑤𝑘 ), 𝜑𝑘  ( 𝑤1, ⋯ , 𝑤𝑘 ) = 1 indicates that we take one more 

observation and 𝜑𝑘 (𝑤1, ⋯ , 𝑤𝑘) = 0 indicates that we stop at this stage. Similar to 

Bernoulli trials a point 𝛼 = (𝑥, 𝑦, 𝑧) is a continuation point if there exists one 

sequence of realization (𝑤1, ⋯ , 𝑤𝑥+𝑦+𝑧) leading to 𝛼 such that 𝜑𝑗(𝑤1, ⋯ , 𝑤𝑗) =

1 ∀𝑗 ≤ 𝑥 + 𝑦 + 𝑧. A point 𝛼 = (𝑥, 𝑦, 𝑧) is a boundary point if there exists one 

sequence of realization (𝑤1, ⋯ , 𝑤𝑥+𝑦+𝑧) leading to 𝛼 such that 𝜑𝑗(𝑤1, ⋯ , 𝑤𝑗) =

1 ∀𝑗 < 𝑥 + 𝑦 + 𝑧 and 𝜑𝑥+𝑦+𝑧(𝑤1, ⋯ , 𝑤𝑥+𝑦+𝑧) = 0. A point may be a boundary 

point or a continuation point depending on the path. A point is an accessible point 

if it is either a boundary point or a continuation point. Points which are not 

accessible are inaccessible points.  

 

3.2. Estimation of Parameters for Trinomial Distribution 

Consider an experiment with three possible outcomes with finite number of 

independent identical repetitions. Denote the occurrence of the event having 

probability 𝑝 as 𝑥  times, the occurrence of the event having probability 𝑞  as 𝑦 

times and the occurrence of the event having probability 𝑟 as 𝑧 times. Sampling 

plan for such experiment is defined as 𝑃(0,0,0) which is 𝑥 + 𝑦 + 𝑧 = 𝑛. i.e. for a 

fixed 𝑥 = 𝑡, (0 ≤ 𝑡 ≤ 𝑛), the boundary points are points of the line 𝑦 + 𝑧 = 𝑛 −

𝑡. It can be represented graphically as Figure 12. 
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Figure 12: Trinomial Sampling Plan 

The above diagram exhibits the trinomial sampling plan, i.e. for a fixed value of 

𝑥 = 𝑡, 0 < 𝑡 < 𝑛, the boundary points are the integral solutions to the equation 

𝑦 + 𝑧 = 𝑛 − 𝑡, while for 𝑥 = 𝑛 only (𝑛, 0,0) is the boundary point.  

Clearly the plan is closed as ∀𝛼 = (𝑥, 𝑦, 𝑧), ∑ 𝑝𝑥𝑞𝑦𝑟𝑧 = 1𝛼∈𝐵 .  

From now on we will use the notation for boundary point 𝛼 = (𝑥, 𝑦, 𝑧) as 𝛼(0,0,0). 

 

Figure 13: One-step pull down Trinomial Sampling Plan along X-axis 
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Now, to estimate 𝑝 one can pull down the plan one-step along X-axis towards (Y-

Z) plane, i.e., pull down plan 𝑃(−1,0,0) has to be adopted [Figure 13]. Let us 

denote the new boundary point as 𝛼(−1,0,0) = (𝑥 − 1, 𝑦, 𝑧). It can be seen then 

𝑃(−1,0,0) is closed. Also, a typical 𝑘(𝛼) is given by (𝑥, 𝑦, 𝑧) =
𝑛!

𝑥!𝑦!𝑧!
 . Hence, the 

estimator is given by the following steps: 

∑ 𝑘(𝛼(0,0,0))𝑝𝑥𝑞𝑦𝑟𝑧 = 1𝑃(0,0,0)
,                 since 𝑃(0,0,0) is closed 

⇒ ∑ 𝑘(𝛼(−1,0,0))𝑝𝑥−1𝑞𝑦𝑟𝑧 = 1𝑃(−1,0,0)
,     since 𝑃(−1,0,0) is closed 

⇒ ∑ [
𝑘(𝛼(−1,0,0))

𝑘(𝛼(0,0,0))
] 𝑘(𝛼(0,0,0))𝑝𝑥𝑞𝑦𝑟𝑧 = 𝑝

𝑃(−1,0,0)

 

∴ �̂� =
𝑘(𝛼(−1,0,0))

𝑘(𝛼(0,0,0))
=

(𝑛−1)!

(𝑥−1)!𝑦!𝑧!

𝑛!

𝑥!𝑦!𝑧!

=
𝑥

𝑛
 

Similarly, estimator of 𝑞  and 𝑟  can be obtained using the one-step pull down 

sampling plan  𝑃(0, −1,0) which is along Y-axis and 𝑃(0,0, −1) which is along 

Z-axis, respectively. 

∴ �̂� =
𝑘(𝛼(0,−1,0))

𝑘(𝛼(0,0,0))
=

(𝑛−1)!

𝑥!(𝑦−1)!𝑧!
𝑛!

𝑥!𝑦!𝑧!

=
𝑦

𝑛
   and  �̂� =

𝑘(𝛼(0,0,−1))

𝑘(𝛼(0,0,0))
=

(𝑛−1)!

𝑥!𝑦!(𝑧−1)!
𝑛!

𝑥!𝑦!𝑧!

=
𝑧

𝑛
. 

Now, to estimate 𝑝𝑞, we need one-step pull down sampling plan along X-axis and 

also Y-axis simultaneously towards Z-axis which is 𝑃(−1, −1,0). Therefore, we 

get the estimator as, 

𝑝�̂� =
𝑘(𝛼(−1,−1,0))

𝑘(𝛼(0,0,0))
=

(𝑛−2)!

(𝑥−1)!(𝑦−1)!𝑧!
𝑛!

𝑥!𝑦!𝑧!

=
𝑥𝑦

𝑛(𝑛−1)
. 

Similarly, to estimate 𝑝𝑞𝑟, we need one-step pull down sampling plan along all 

the three directions, which is 𝑃(−1, −1, −1). Therefore, we get the estimator as 

𝑝𝑞�̂� =
𝑘(𝛼(−1,−1,−1))

𝑘(𝛼(0,0,0))
=

(𝑛−3)!

(𝑥−1)!(𝑦−1)!(𝑧−1)!
𝑛!

𝑥!𝑦!𝑧!

=
𝑥𝑦𝑧

𝑛(𝑛−1)(𝑛−2)
. 
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3.3. Estimation of Parameters for Inverse Trinomial Distribution 

Consider, in trinomial setup, the inverse trinomial sampling plan 𝑥 = 𝑘, where the 

occurrence of the event having probability 𝑝  is considered as 𝑥 (= 𝑘) times as 

mentioned earlier. Let us consider a typical boundary point 𝛼 = (𝑥, 𝑦, 𝑧). Under 

the sampling plan we have, 

𝑘(𝛼) =
(𝑘 + 𝑦 + 𝑧 − 1)!

(𝑘 − 1)!  𝑦!  𝑧!
. 

Here, (𝑌 − 𝑍) 𝑝𝑙𝑎𝑛𝑒  serves as an infinite collection of boundary points, 

represented graphically as in Figure 14. 

 

 

Figure 14: Inverse Trinomial Sampling Plan, 𝑥 = 𝑘 
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Figure 15: One-step Pull Down and push-up Inverse Trinomial Sampling Plan 

3. 3.1 Estimation of p, q, r, pq, pqr 

Since, 𝑃(0,0,0) which is 𝑥 = 𝑘, is a closed plan, we can argue that the pull down 

plan 𝑃(−1,0,0)also satisfies the closure property as 𝑃(−1,0,0) is nothing but the 

plan consisting of boundary points on (𝑌 − 𝑍) 𝑝𝑙𝑎𝑛𝑒 for 𝑥 = 𝑘 − 1 [Figure 15]. 

The new boundary point is 𝛼(−1,0,0). Hence, finding unbiased estimator of 𝑝 is 

routine by application of path counting formula. The estimator is derived by the 

following steps, 

∑ 𝑘(𝛼(0,0,0))𝑝𝑥𝑞𝑦𝑟𝑧 = 1𝑃(0,0,0)
,                 since 𝑃(0,0,0) is closed 

⇒ ∑ 𝑘(𝛼(−1,0,0))𝑝𝑥−1𝑞𝑦𝑟𝑧 = 1𝑃(−1,0,0)
,     since 𝑃(−1,0,0) is closed 

⇒ ∑ [
𝑘(𝛼(−1,0,0))

𝑘(𝛼(0,0,0))
] 𝑘(𝛼(0,0,0))𝑝𝑥𝑞𝑦𝑟𝑧 = 𝑝

𝑃(−1,0,0)

 

∴ �̂� = [
𝑘(𝛼(−1,0,0))

𝑘(𝛼(0,0,0))
] =

(𝑘+𝑦+𝑧−2)!

(𝑘−2)! 𝑦! 𝑧!

(𝑘+𝑦+𝑧−1)!

(𝑘−1)! 𝑦! 𝑧!

=
𝑘 − 1

𝑘 + 𝑦 + 𝑧 − 1
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Similarly, estimators of 𝑞  and 𝑟  can be obtained using the one-step pull down 

sampling plan  𝑃(0, −1,0) which is along Y-axis and 𝑃(0,0, −1) which is along 

Z-axis, respectively. 

Now, to estimate 𝑝𝑞, we need one-step pull down sampling plan along X-axis and 

along Y-axis simultaneously – both being towards Z-axis which is 𝑃(−1, −1,0). 

The new boundary point is 𝛼(−1,−1,0). Therefore, we get the estimator as 

𝑝�̂� =
𝑘(𝛼(−1,−1,0))

𝑘(𝛼(0,0,0))
=

(𝑘+𝑦+𝑧−3)!

(𝑘−2)!(𝑦−1)!𝑧!
(𝑘+𝑦+𝑧−1)!

(𝑘−1)!  𝑦!  𝑧!

=
𝑦(𝑘−1)

(𝑘+𝑦+𝑧−1)(𝑘+𝑦+𝑧−2)
. 

Similarly, to estimate 𝑝𝑞𝑟, we need one-step pull down sampling plan along X-

axis, Y-axis and Z-axis simultaneously which is 𝑃(−1, −1, −1) . The new 

boundary point is 𝛼(−1,−1,−1). Therefore, we get the estimator as 

𝑝𝑞�̂� =
𝑘(𝛼(−1,−1,−1))

𝑘(𝛼(0,0,0))
=

(𝑘+𝑦+𝑧−4)!

(𝑘−2)!(𝑦−1)!(𝑧−1)!
(𝑘+𝑦+𝑧−1)!

(𝑘−1)!  𝑦!  𝑧!

=
𝑦𝑧(𝑘−1)

(𝑘+𝑦+𝑧−1)(𝑘+𝑦+𝑧−2)(𝑘+𝑦+𝑧−3)
. 

Remark 2: We can estimate 𝑝, 𝑝𝑞, 𝑝𝑞𝑟  in trinomial distribution using first 

principle method, too. This is just verification for the beginners. However, path 

counting allows us to get unbiased estimators of other complicated forms of 

parameters. 

3.3.2. Estimation of 𝒑−𝟏 

Now, consider the trinomial sampling plan 𝑃(0,0,0) as shown in Figure 12, where 

the boundary points are 𝛼(0,0,0) = (𝑥, 𝑦, 𝑧),    𝑠. 𝑡.    𝑥 + 𝑦 + 𝑧 = 𝑛 . We want to 

estimate 𝑝−1. For that we have to push-up (move forward) the sampling plan one-

step along X-axis. The new plan is 𝑃(+1,0,0) and the new boundary points are 

𝛼(+1,0,0) = (𝑥 + 1, 𝑦, 𝑧),    𝑠. 𝑡.    𝑥 + 𝑦 + 𝑧 = 𝑛 + 1. Similar to one-step push-up 

binomial sampling plan, the boundary points on 𝑦 + 𝑧 = 𝑛 + 1, 𝑥 = 0 are absent 

in the plan [Figure 16]. Therefore, the plan  𝑃(+1,0,0)  is not closed. Hence, 

estimator of 
1

𝑝
 can not be obtained. Find Bose-Sinha (1984) work. 
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Figure 16: One-step push-up Binomial Sampling Plan along X-axis  

However, in case of inverse trinomial sampling plan as shown in Figure 14, the 

one-step push-up (forward) plan along X-axis is 𝑃(+1,0,0) where the boundary 

points are 𝛼(0,0,0) = (𝑘 + 1, 𝑦, 𝑧) . Therefore, with reference to Figure 14 plan 

𝑃(+1,0,0) is nothing but the plan consisting of boundary points on (𝑌 − 𝑍) 𝑝𝑙𝑎𝑛𝑒 

for 𝑥 = 𝑘 + 1 as shown in Figure 15. Hence the plan 𝑃(+1,0,0) is closed and 
1

𝑝
 is 

estimable. Therefore, the unbiased estimator of 
1

𝑝
 is 

1

𝑝

̂
=

𝑘(𝛼(+1,0,0))

𝑘(𝛼(0,0,0))
=

(𝑘+𝑦+𝑧)!

𝑘! 𝑦! 𝑧!
(𝑘+𝑦+𝑧−1)!

(𝑘−1)! 𝑦! 𝑧!

=
𝑘+𝑦+𝑧

𝑘
. 

Remark 3. From the inverse trinomial sampling plan 𝑥 = 𝑘 we can not estimate 
1

𝑞
directly by push-up sampling method as the plan 𝑃(0, +1,0) is no more closed.  

To estimate 
1

𝑞
 we have to switch the inverse trinomial sampling plan from 𝑥 = 𝑘 to 

𝑦 = 𝑘, k being a generic constant. It will not alter the result as the plan is symmetric. 

Therefore, using one-step push-up sampling plan along Y-axis we can get 
1

𝑞

̂
. On 

the other hand to estimate  
1

𝑟
 we have to switch the inverse trinomial sampling plan 
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from 𝑥 = 𝑘 to 𝑧 = 𝑘. Therefore, using one-step push-up sampling plan along Z-

axis we can get 
1

𝑟

̂
. 

At this stage, one might ask the following question: Is there a single plan which 

takes care of unbiased estimation of all the three parameters viz., 1/p, 1/q and 1/r ? 

The answer is in the affirmative and there are many plans to achieve this. One 

simple plan is an extension of P[(5, 3)] sampling plan involving Heads and Tails 

in case of binomials. Recall P[(5, 3)] plan which states : Continue drawing 

observations on Heads and Tails until 5 Heads and 3 Tails are observed.  We 

consider a natural extension like P[(5, 5, 5)] below.  

3.3.3. Unbiased estimator of 𝒑𝒂𝒒𝒃𝒓𝒄 

To get an unbiased estimator of 𝜃 = 𝑝𝑎𝑞𝑏𝑟𝑐 we need to pull down the sampling 

plan 𝑎 -steps along X-axis, 𝑏 -steps along Y-axis and 𝑐 -steps along Z-axis 

simultaneously. The new boundary point is 𝛼(−𝑎,−𝑏,−𝑐)  in the sampling plan 

𝑃(−𝑎, −𝑏, −𝑐). Therefore, we can get the estimator as 

𝜃 =
𝑘(𝛼(−𝑎,−𝑏,−𝑐))

𝑘(𝛼(0,0,0))
. 

In case of trinomial sampling plan we will get the estimator as 

𝜃 =
𝑘(𝛼(−𝑎,−𝑏,−𝑐))

𝑘(𝛼(0,0,0))
=

(𝑛−𝑎−𝑏−𝑐)!

(𝑥−𝑎)!(𝑦−𝑏)!(𝑧−𝑐)!
𝑛!

𝑥!𝑦!𝑧!

. 

And in case of inverse trinomial sampling plan [with boundary along x = k] we 

will get the estimator as 

𝜃 =
𝑘(𝛼(−𝑎,−𝑏,−𝑐))

𝑘(𝛼(0,0,0))
=

(𝑘+𝑦+𝑧−1−𝑎−𝑏−𝑐)!

(𝑘−1−𝑎)!(𝑦−𝑏)!(𝑧−𝑐)!
(𝑘+𝑦+𝑧−1)!

(𝑘−1)!  𝑦!  𝑧!

. 

Example: For simplicity we consider 𝜃 = 𝑝2𝑞3𝑟4 to be estimated and we confine 

to usual trinomial distribution. 

First we consider the trinomial plan 𝑃(0,0,0) with 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 such that 𝑥 + 𝑦 +

𝑧 = 𝑛(≥ 2 + 3 + 4 =9). We denote the boundary point as 𝛼(0,0,0) = (𝑥, 𝑦, 𝑧). We 

use pull down sampling plan 2-steps along X-axis, 3-steps along Y-axis and 4-

steps along Z-axis. Then sampling plan becomes 𝑃(−2, −3, −4)  and the new 
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boundary point is 𝛼(−2,−3,−4) = (𝑥 − 2, 𝑦 − 3, 𝑧 − 4) . Using path counting 

formula we can get 𝑘(𝛼(0,0,0)) =
𝑛!

𝑥!𝑦!𝑧!
and 𝑘(𝛼(−2,−3,−4)) =

(𝑛−9)!

(𝑥−2)!(𝑦−3)!(𝑧−4)!
. 

Therefore, estimator of  𝜃 = 𝑝2𝑞3𝑟4 is   

𝜃 =
𝑘(𝛼(−2,−3,−4))

𝑘(𝛼(0,0,0))
=

(𝑛−9)!

(𝑥−2)!(𝑦−3)! (𝑧−4)!
𝑛!

𝑥! 𝑦! 𝑧!

=
𝑥(2)𝑦(3)𝑧(4)

𝑛(9)
. 

For example, we consider a trinomial plan with  𝑥 + 𝑦 + 𝑧 = 15 . Therefore, a 

typical boundary point is 𝛼(0,0,0) = (3,4,8), for example. We want to find an 

estimator at 𝛼(0,0,0) = (3,4,8). We use pull down sampling plan 2-step along X-

axis, 3-step along Y-axis and 4-step along Z-axis. Then the new boundary point is 

𝛼(−2,−3,−4) = (1,1,4) which can be obtained using path counting. Therefore, the 

estimator at 𝛼(0,0,0)= (3,4,8)  is 

𝜃 =
𝑘(𝛼(−2,−3,−4))

𝑘(𝛼(0,0,0))
=

(𝑛−9)!

(𝑥−3)!(𝑦−3)!(𝑧−4)!
𝑛!

𝑥!𝑦!𝑧!

=
6!

1!1!4!
15!

3!4!8!

= 0.00053.  

Remark4. It is to be noted that for the existence of such estimator it is not 

necessary for every boundary point (x,y,z) to satisfy : x ≥ 𝑎 , 𝑦 ≥ 𝑏 and 𝑧 ≥ 𝑐. 

Since 𝑛 ≥ 𝑎 + 𝑏 + 𝑐 , the point (a,b,c) is an accessible/boundary point and the 

estimator is positive for some boundary points. Recall similar results for binomial 

distribution. Example: 𝜃 = 0 for 𝛼(0,0,0) = (2, 10, 3). 

3.3.4.Estimation for inverse trinomial distribution: 

We consider the inverse trinomial sampling plan 𝑃(0,0,0)  with fixed number of 

success 𝑥 = 𝑘 ; 𝑦, 𝑧 = 0,1,2, ⋯ . The boundary point is denoted as 𝛼(0,0,0) =

(𝑘, 𝑦, 𝑧) for such sampling plan. We use pull down sampling plan 2-step along X-

axis, 3-step along Y-axis and 4-step along Z-axis. Then the new boundary point is 

𝛼(−2,−3,−4) = (𝑘 − 2, 𝑦 − 3, 𝑧 − 4) . Using path counting formula we can get 

𝑘(𝛼(0,0,0)) =
(𝑘+𝑦+𝑧−1)!

(𝑘−1)!  𝑦!  𝑧!
and 𝑘(𝛼(−2,−3,−4)) =

(𝑘+𝑦+𝑧−10)!

(𝑘−3)!(𝑦−3)!(𝑧−4)!
. Therefore, 

estimator of  𝜃 = 𝑝2𝑞3𝑟4 is   

𝜃 =
𝑘(𝛼(−2,−3,−4))

𝑘(𝛼(0,0,0))
=

(𝑘+𝑦+𝑧−10)!

(𝑘−3)!(𝑦−3)!(𝑧−4)!
(𝑘+𝑦+𝑧−1)!

(𝑘−1)!  𝑦!  𝑧!

=
(𝑘−1)(2)𝑦(3)𝑧(4)

(𝑘+𝑦+𝑧−1)(9)
. 
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For example, let 𝑥 = 𝑘 = 5 (and 𝑦 = 5, 𝑧 = 5). Now we pull down the sampling 

plan 2-step along X-axis, 3-step along Y-axis and 4-step along Z-axis. Then the 

new boundary point is 𝛼(−2,−3,−4) = (2,1,0) . Therefore, the estimator at 

𝛼(0,0,0)=(5,5,5) is 

𝜃 =
𝑘(𝛼(−2,−3,−4))

𝑘(𝛼(0,0,0))
=

(𝑘+𝑦+𝑧−10)!

(𝑘−3)!(𝑦−3)!(𝑧−4)!

(𝑘+𝑦+𝑧−1)!

(𝑘−1)!  𝑦!  𝑧!

=

5!

2!2!1!
14!

4!5!5!

= 0.00012 

Remark 5: It is to be noted that for the existence of such an estimator it is not 

necessary for the boundary point to satisfy:  𝑦 ≥ 𝑏  and 𝑧 ≥ 𝑐 . But, the plan 

parameter ′𝑘′  should be so chosen that 𝑘 ≥ 𝑎 + 𝑏 + 𝑐 should be satisfied. 

3.3.5 Estimation of 
1

𝑝𝑞
 and 

1

𝑝𝑞𝑟
 when an experiment is performed until (5,5,5) is 

achieved 

Let us consider, an experiment is performed until 𝑥 = 5 and 𝑦 = 5 and 𝑧 = 5 are 

observed. Boundary points of such sampling plan are given in Figure 17 (red 

colour).  

 

Figure 17: Sampling plan to get (5,5,5)  
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From Figure 17 we can find that the boundary points (red colour) are : (a) (5,5,5), 

(b) (x,5,5); x≥6, (c) (5,y,5); y≥6 and (d) (5,5,z); z≥6. At first, we compute the 

values of 𝑘(𝛼(0,0,0)). For 𝛼(0,0,0) = (5,5,5), all the paths are free paths from the 

point (0,0,0) through the point (4,5,5) to (5,5,5). To reach (5,5,5), we can also 

approach via (5,4,5) or (5,5,4). Hence following the path counting formula, the 

value of 𝑘(𝛼(0,0,0)) in this case will be 3 ×
14!

4!5!5!
= 756756.  

 

Now, for the type (b), let, a typical boundary point be 𝛼(0,0,0) = (𝑥, 5,5). Then it 

must be reached only through the points (x,4,5) or (x,5,4). Hence in this case, the 

value of 𝑘(𝛼(0,0,0)) is 2 ×
(𝑥+9)!

𝑥!4!5!
.  

 

Similarly, for the type (c), a typical boundary point is 𝛼(0,0,0) = (5, 𝑦, 5) which 

must be reached only through the point (4,y,5) or (5,y,4). Hence in this case, the 

value of 𝑘(𝛼(0,0,0)) is 2 ×
(𝑦+9)!

4!𝑦!5!
 

 

Lastly, for type (d), let a typical boundary point be 𝛼(0,0,0) = (5,5, 𝑧). Then it 

must be reached only through the point (5,4,z) or (4,5,z). Hence in this case, the 

value of 𝑘(𝛼(0,0,0)) is 2 ×
(𝑧+9)!

4!5!𝑧!
.  

 

Now to estimate  
1

𝑝𝑞
, we need to push-up one-step along X-axis and push-up one-

step along Y-axis. Therefore, the new boundary points 𝛼(+1,+1,0) are [blue colour 

in Figure 17] (a) (6,6,5), (b) (x,6,5); x≥7, (c) (6,y,5); y≥7 and (d) (6,6,z); z≥6. On 

the other hand, to estimate 
1

𝑝𝑞𝑟
 we can push-up one-step towards X-axis, one-step 

towards Y-axis and one-step towards Z-axis. Therefore, the new boundary points 

𝛼(+1,+1,+1) are (a) (6,6,6), (b) (x,6,6); x≥7, (c) (6,y,6); y≥7 and (d) (6,6,6); z≥7. 

Boundary points and the estimators are summarized in Table 5. 

We may argue, as in the case on P[(5, 3)] plan, about the closure of the sampling 

plan P[(5, 5, 5)].  We skip the details. 
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Table 5: Estimation of 
1

𝑝𝑞
 and 

1

𝑝𝑞𝑟
 

𝛼 (0,0,0)
 

𝛼 (+1,+1,0)
 

𝛼 (+1,+1,+1)
 

 

𝑘(𝛼(0,0,0)) 

 

𝑘(𝛼(+1,+1,0)) 

 

𝑘(𝛼(+1,+1,+1)) 
1

𝑝𝑞

̂

=
𝑘(𝛼(+1,+1,0))

𝑘(𝛼(0,0,0))
 

1

𝑝𝑞𝑟

̂

=
𝑘(𝛼(+1,+1,+1))

𝑘(𝛼(0,0,0))
 

 

(5,5,5) (6,6,5) (6,6,6) 
3 ×

14!

4! 5! 5!
 

16!

6! 6! 4!
+ 2

×
16!

6! 5! 5!
 

3 ×
17!

6! 6! 5!
 

7.55 22.67 

(x,5,5); 

 x≥6 

(x,6,5); 

x≥7 

(x,6,6); 

x≥7 
2 ×

(𝑥 + 9)!

𝑥! 4! 5!
 

(𝑥 + 10)!

𝑥! 6! 4!

+
(𝑥 + 10)!

𝑥! 5! 5!
 

2 ×
(𝑥 + 11)!

𝑥! 5! 6!
 

11(𝑥 + 10)

60
 

(𝑥 + 10)(𝑥 + 11)

30
 

(5,y,5); 

 y≥6 

(6,y,5); 

 y≥7 

(6,y,6); 

y≥7 2 ×
(𝑦 + 9)!

4! 𝑦! 5!
 

(𝑦 + 10)!

6! 𝑦! 4!

+
(𝑦 + 10)!

5! 𝑦! 5!
 

2 ×
(𝑦 + 11)!

5! 𝑦! 6!
 

11(𝑦 + 10)

60
 

(𝑦 + 10)(𝑦 + 11)

30
 

(5,5,z);  

z≥6 

(6,6,z);  

z≥6 

(6,6,z); 

z≥7 
2 ×

(𝑧 + 9)!

4! 5! 𝑧!
 2 ×

(𝑧 + 11)!

5! 6! 𝑧!
 2 ×

(𝑧 + 11)!

5! 6! 𝑧!
 

(𝑧 + 10)(𝑧 + 11)

30
 

(𝑧 + 10)(𝑧 + 11)

30
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