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Abstract 

In this paper, we have given a historical background for the Poisson distribution and have 

described some of its applications in the early days. We have also shown how Binomial 

and Negative-binomial distributions can be approximated by the Poisson distribution. 

Finally, we present four different methods of proof of the convergence of Poisson to the 

normal distribution. These proofs can be gainfully discussed in a senior classroom setting. 

The note may also serve as a useful pedagogical reference article in senior-level 

probability and mathematical statistics courses.  
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1. Introduction  

The Poisson distribution is a widely used discrete distribution in statistics. It has 

been shown to be highly effective in modeling the occurrences of rare events in a 

variety of real-world random phenomena. For example, it is applicable in 

modeling the number of severe traffic accidents that occur monthly in a town, the 

number of severe earthquakes occurring in a year, the number of life indemnity 
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claims filed yearly with an insurance company, the number of alpha particles 

emitted from a piece of radioactive material in a fixed time interval, the number of 

mail carriers bitten by dogs per month and so on and on. All these scenarios deal 

with the total number of occurrences in a series of independent Bernoulli type 

experiments, each having a very small probability of occurrence. This total 

number, say X
, a random variable (r.v.) with possible values 0,  1,  2,    and 

depending on a parameter   ( 0  ), is said to have a Poisson distribution if its 

probability mass function (pmf) f  is given by 

( )f x  ( )
!

x

P X x e
x





    for 0,1,2,x   ,        (1.1) 

where 1
!0

2.71828
n

e


   is the Euler number. The expected value (mean) and 

the variance of this discrete r.v. X
 are ( )E X    and 2 ( )Var X   , 

respectively. If ( )r   ( )rE X    denotes its rth ( 1r  ) central moment, its 

third-order central moment is also   and the skewness and kurtosis coefficients 

are 3 2

1 3 2[ ( ) ( )]      1  and 2

2 4 2[ ( ) ( ) 3]       1  , respectively. So, it 

is a positively skewed leptokurtic distribution. The recursion relation 

( ) ( ) ( 1)f x x f x    0,1,2,x   calculates all probability values of this pmf f

readily. Similarly, a straight forward recursion relation for the central moments 

1 1
[ ]r

r r

d

d
r




  

 
   (see [10], p. 158) helps to determine all central moments 

recursively. Likewise, if we let ( ) ( )r

r E X   , 1r  , denote its rth integral 

moment about the origin, the recursive relation 1 [ ]rd

r r d




      aids the easy 

calculation of all moments ( )r   (see [15], p.179). Further, the cumulative  

distribution function (cdf) of the Poisson r.v. X  can be expressed and easily 

evaluated in terms of  the incomplete gamma function,  viz.,  

( ) ( )XF x P X x
     1

( 1)
0 !

kx
y x

x
k

e
e y dy

k










 


  ,        (1.2)  

where ( 1) !x x    for 0,1,x    (see [15], p. 180). The Poisson probability 

distribution was named after an eminent French mathematician, physicist, and 

academic administrator Simeon Denis Poisson (1781-1840). It was so named due 

to his introduction of this distribution as a model for “laws of small numbers”. 

According to a letter by the mathematician Abel in 1826 to his friend, Poisson was 

a man who knew “how to behave with a great deal of dignity” (see [12], p.129). 
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One of the early applications of this model was to the number of Prussian cavalry 

deaths by kicking horses in the Prussian army. One of Poisson’s many interests 

was the application of probability theory to the administration of law in criminal 

trials and the like. This is evident from his book, titled “Recherches sur la 

probabilitte des jugements en matiere criminelle et en matiere civile”, which was 

published in 1837 (see [13]). The French mathematician S. D. Poisson did not 

recognize the potential of the vast real-world applications of this distribution. It 

was L. von Bortkiewicz in 1898, a German professor, who first understood and 

explained the importance of Poisson distribution in his book titled, “Das Gesetz 

der Lleinen Zahlen” (see [8], [14]) that transformed Poisson’s “limit” to Poisson 

“distribution”. One of the striking examples in this book was the modeling, as 

mentioned above, of the number of Prussian cavalry deaths by kicking horses 

using Poisson distribution (see [18]). Another great application of this distribution 

was the study of hits of flying bombs in London during the Second World War. 

During this war, the British authorities were anxious to know if these bombs were 

aimed at particular targets or were simply dropped at random. The modeling of 

this data using Poisson distribution convinced the British military that the bombs 

struck at random and not with any advanced aiming ability.  

There could be many more areas of applications: for example, in assessing a 

variety of rare occurrences in space or in detecting clusters of diseases whether 

they have high or low epidemicity and so on and on. For a thorough review of this 

distribution, see [11] and [17]. 

The paper is organized as follows. We have listed some elementary results in 

Section 2 that will be used in subsequent sections for proofs. In Section 3, we 

discuss Poisson approximations to the Binomial and Negative-binomial and 

Poisson’s relationships with other distributions. In Section 4, four different 

methods of proof of the convergence of Poisson to the normal distribution are 

discussed. Some concluding remarks are included in Section 5. In the Appendix, 

we have provided brief derivations for the two recursion formulae above for easy 

calculation of all moments, and also for the formula (1.2) for Poisson P  cdf F  in 

terms of the ‘Incomplete gamma function’.  

2. Preliminaries 

In this section, we list a few definitions, formulas, Lemmas and Theorems which 

will be used for proofs in Section 3.        
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Formula 2.1. The Stirling formula for approximating ! ( 1)( 2) (2)(1)n n n n    is 

given by 

            ! 2 ( )
n n

n n n e


 , for large n .                     (2.1) 

This approximation ( ) is in the sense that [ ! 2 ] 1
n n

n nn e


 , as n   (see [1]). 

Formulas 2.2. The following are two well-known Tylor series expansions for 

natural logarithm: 

             (i) ln(1 )x    
2 3

2 3

x x
x       1

1

( 1)
i

i

i

x

i






   for  1 1x    ,                 (2.2) 

and 

         (ii) ln(1 )x   
2 3

2 3

x x
x       

1

i

i

x

i





    for  1 1x   .                 (2.3) 

Lemma 2.1.  Let { ,  1}n n   be a sequence of real numbers   
n 0 , as n  . 

Then,    

lim(1 )n n

n n
n

e
  


   , where   and  do not depend on n . 

Definition 2.1. The moment generating function (mgf) of a r.v. X is defined by 

( ) ( )tX

XM t E e  for all | |t h  with 0h , provided | ( ) |tXE e  .      

If the mgf ( )XM t  exists, it is associated with a unique probability distribution. That 

is, there is a one-to-one correspondence between the classes of all probability 

distributions and their corresponding mgf’s. 

Lemma 2.2. Suppose Z is a (standard normal) (0,1)N  r.v. i.e., with density 

 
2 2( ) 1 2 z

Zf z e  ,     z    . Then the mgf of Z  is  
2

2
( )

t

Z
M t e .  

Theorem 2.1. (see [2]). Let 
nX , 1,  2,  n   be a sequence of r.v.’s with well-

defined mgf’s ( )
nXM t , for | |t h , 0h . Let ( )XM t  denote the mgf of a r.v. X  such 

that lim ( ) ( )
nX X

n
M t M t


   for all | |t h ; then d

nX X , as n  . 

(The notation d

nX X stands for the convergence of the distribution of  r.v. 
nX  

to the distribution of the r.v. X , as  n  .) 
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Theorem 2.2. (see [1]). Let 
1X , 

2X ,  , 
nX  be a sequence of independent and 

identically distributed (i.i.d.) r.v.’s with a finite mean   and a finite variance 

2 0  . Set 
1

n

n i

i

S X


  and ( )n nX S n . Then the sequence nZ  ( ) ( )[ ]
n

S n n   

( )[ ]
n

n X   d Z ~𝑁(0,1) the standard normal distribution, as n  .   

The above is the simplest of Central Limit Theorems (CLT’s), whose proof can be 

accomplished using the well-known characteristic function methodology (see 

[16], p.189). 

Theorem 2.3. (see [1]). Let 
1 2,  , , nY Y Y  be a sequence of independent and 

identically distributed Poisson r.v.’s with parameter 1  . If we set 
1

n

n ii
X Y


 , 

then 
nX  is a Poisson r.v. with parameter n  . That is, the r.v. nX  has the pmf 

given by  

( )nf x   ( )
!

n x

n

e n
P X x

x



  ,  0,1,2,x                                                          (2.4) 

with mean n n   and variance 2

n n  . 

Big O  and Small o  Notations   

The Big O represented by the notation ( ) ( ( ))f n O g n implies that the ratio 

| ( ) ( ) |f n g n K  for all n ,  as n  , where K   is some positive constant. Thus, 

if | ( ) | 0g n  , as n   , | ( ) | 0f n   at the same or higher rate than that of | ( ) |g n . 

The Small o  represented by the notation ( ) ( ( ))f n o g n  implies that the ratio 

| ( ) ( ) | 0f n g n  , as n  . In this case, if | ( ) | 0g n  , as n   , | ( ) | 0f n   

necessarily at a higher rate than that of | ( ) |g n ; (see [3], p. 402 or [5], p. 46). 

 

3. Poisson Approximations and its Relationship to Other 

    Distributions  

Poisson as a limit of the binomial  

In case of a large number of independent Bernoulli trials n , each having a small 

probability p , 0 1p  ,  of success, it is well-known that the Binomial pmf of 

nX   the total number of successes , viz., ( )n k     (1 )n k n k

k p p  , 0,1, ,k n , can 
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be approximated by the Poisson pmf ( )f k , 0,1,k   provided as n   and 

0np p  , 𝜆𝑛 = 𝑛𝑝𝑛, 
nnp   (𝑝𝑛 =

𝜆𝑛
𝑛⁄ )  remains constant or converges to 𝜆; 

lim ( )n
n

k


   lim (1 )n k n k

k n n
n

p p 


  

!

k

e
k

   ( )f k  , 0,1,2,k  .                  (3.1) 

The proof of (3.1) is as follows: We can write 

     lim (1 )n k n k

k n n
n

p p 


  

!
lim 1

!( )!

k n k

n

n

k n k n n

 




   
    

    
 

!
lim 1 1

! ( )!

n kk

kn

n

k n n n k n

  




   
     

   
.      (3.2) 

The third term in (3.2) above can be simplified using  

!

( )!k

n

n n k
 

( 1)( 2) ( 1)
k

n n n n k

n

   
   

1 2 3 1
1 1 1 1

k

n n n n

     
         
     

,                                        (3.2a) 

so that for fixed k ,  as n  , in view of Lemma 2.1 and (3.2a) above, we clearly 

have 

1

n

e
n

  
  

 
 ,  !

1
( )!k

n

n n k



 and 1 1

k

n




 
  

 
.     (3.2b) 

The proof of (3.1) now follows from (3.2) in view of (3.2b). This completes the 

proof.   
 

Poisson as a limit of the negative binomial  

The negative binomial distribution is defined, in terms of an infinite series of 

independent Bernoulli trials, as the distribution of the random variable 
rX that 

denotes the number of successes before the rth failure. This form of the negative 

binomial distribution has the probability mass function (pmf) 

*( ) ( )r rf k P X k    1

     (1 )r k k r

k p p    for  0,1,2,k  .                  (3.3) 

The mean and variance of this distribution are ( ) [ (1 )]rE X rp p   and Var(
rX )

2[ (1 ) ]rp p  . If r   and 0rp p   with 𝜆𝑟 = [𝑟𝑝 (1 − 𝑝)⁄ ]  remaining 
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constant or converging to 𝜆; (𝑝 = 𝜆𝑟 (𝑟 + 𝜆𝑟)⁄ )𝑛, then the negative binomial pmf 

(3.3) above can be approximated by the Poisson pmf f . This is shown as follows: 

*lim ( )r
r

f k


  1

     lim (1 )r k k r

k
r

p p 


  

( 1)!

!( 1)!
lim

k r

r

r k r

k r r r



 

 

  

   
    

   
  

   
1 1 ( 1)!

! (1 ) (1 ) ( 1)!
lim

k

r k kr

r k

k r r r r



 

 

  
  ;                               (3.4) 

the fourth term in (3.4) can be simplified as 

( 1)!

( 1)!k

r k

r r

 



( 1)( 2) ( )( 1)!

( 1)!k

r k r k r r

r r

    



  

1 2
1 1

k k

r r

   
    
  

 1
1

r

 
 

 
,                                                                 (3.5) 

so that that from Lemma 2.1 and equation (3.5), as r   and k  remains fixed, we 

clearly have  

1

r

e
r

  
  

 
 ,  1 1

k

r

 
  

 
  and  ( 1)!

( 1)!k

r k

r r

 


1 .       (3.6) 

Thus from (3.4), in view of (3.6), we may conclude that 

  *lim ( )r
r

f k


  1

     lim (1 )r k k r

k
r

p p 


  

!

k

e
k

  ( )f k ,        (3.7) 

The proof is complete.        

Relationship with Exponential Distribution 

The Poisson distribution can be employed to model the arrival of customers at a 

counter in a given time interval. One of the underlying assumptions on which the 

Poisson distribution is built on is that, for a small interval, the probability of 

arrival is proportional to its length. It makes sense that the longer we wait, the 

more likely that a customer will arrive at the counter.  

Consider a series of events that may occur at random time points, say, at 
1 2, ,T T  

in a time period. For example, cars may arrive at a toll booth or light bulbs may 

fail at times { ; 1}nT n  . The underlying assumption to be made is that the times 

between consecutive events denoted by { ; 1}nX n  , are all independent and 

identically distributed random variables and follow an exponential distribution 
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with parameter  . Let 
0 0T  , 

1

n

n i

i

T X


 , and set ( )X t  max{ :T ,  t 0}nn t  . Then 

( )X t  is a Poisson process with the parameter t , i.e., the process ( )X t , at a fixed 

point 0t  ,  has the pmf 

( )

( ) !
( )

ktt

X t k
f k e

 ,   0,1,2,k                                   (3.8) 

The proof of this is shown below: From the definitions above, we note that the 

event ( )X t k  occurs if and only if 
kT t . It follows that 

[ ( ) ] [ ]kP X t k P T t   .                      (3.9) 

Since 
iX ’s have an exponential density with shape parameter equal to 1, 

kT  has 

the gamma density with shape parameter k . Therefore, the pmf of the r.v. ( )X t  can 

be obtained utilizing (3.9) as 

( )
( ) [ ( ) ] [ ( ) 1]

X t
f k P X t k P X t k      

1[ ] [ ]k kP T t P T t      

1

0( )

k
t

k y
y e dy

k

  




1

0
 

( 1)

k
t

k y
y e dy

k






 

   

             
1

0( )

k
t

k y
y e dy

k

  




1

0
( ) |

( 1)

k y

k te
y

k






 

 
 


1

0
]

t
k yk y e dy


   ,  

where we have used integration by parts for the second integral above, so that, in 

view of ( ) ( 1)!k k    , 

              ( )
( )

X t
f k  

1

0( )

k
t

k y
y e dy

k

  




( )

 
!

t k
e t

k







1

0
 

( )

k
t

k y
y e dy

k

  



  

    
( )

= 
!

t k
e t

k






.          (3.10) 

The proof is complete.        

Relationship with Negative Binomial Distribution 

Let the random vector ( , )X   be such that the r.v. |X    (that is, the 

conditional r.v. X  given   ) follows a Poisson distribution with parameter    

and   has a Gamma( n ,  ) distribution; then 
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( )P X x  ,
0

( ) ( )nf x g d   


  
1

0

1

( ) !

x
n

n

e
e d

n x


 

 





 

     

=
(𝑛 + 𝑥 − 1)!

𝑥! (𝑛 − 1)!

1

𝛽𝑛
(

𝛽

1 + 𝛽
)

𝑛+𝑥

∫
𝑒−[(1+𝛽) 𝛽⁄ ]𝜆𝜆𝑛+𝑥−1

[𝛽 (1 + 𝛽)⁄ ]𝑛+𝑥Γ(𝑛 + 𝑥)

∞

0

𝑑𝜆 

    1 1
    1 1

n x
n x

x



 

 

 
 ,                                                               (3.11) 

which is a negative binomial pmf with parameters n  and (1 )p     (see [5]). 

Green and Yule obtained this result in the year 1920. This model is useful when 

the parameter    is the expected number of accidents for an individual, which 

is assumed to vary from person to person following a Gamma distribution, as 

stated above.                       
 

4. Multiple Proofs for Asymptotic Normality 

It is well-known that Poisson distribution converges to the normal, as n   . 

In this section, we will present four different methods of proof for showing this 

convergence as n  .  The four different methods of proof are the Bagui-Mehra-

Proschan (BMP) Ratio method, the Stirling Approximation method, the MGF 

method, and the general CLT method. The last three are the historically well-

known advanced methods but the first one, a recently devised one (see [ 4], [6]), is 

the easiest of all. 

4.1. The BMP Ratio Method [6] 

This method uses the ratio of two successive probability terms of the pmf 

( ) ( )n nP X x f x  . Converting this ratio into one in terms of the pmf 

*( ) ( )n nf z P Z z   of the standardized variable [( ) ]n nZ X n n   , one can find the 

limit of the difference quotient of the function *ln ( )nf z , leading to a simple 

limiting differential equation. The solution of this equation yields the desired 

density of the limiting distribution, as n  .        

Let X  denote a Poisson r.v. with parameter  . For convenience, set n  . 

From equation (1.1), the pmf of r.v. nX  is given by 
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( )nf x  ( )
!

n x

n

e n
P X x

x



  , 0,1,2,x  ,                                                        (4.1) 

with mean ( )n nE X n    and the variance 2Var( )n nX n   . The ratio of two 

consecutive probability terms of the pmf in (4.1) simplifies to  

1
( 1) ( !)

( ) ( 1)! ( 1)

x

n

x

n

P X x n x n

P X x n x x


 

 
  

.                                                                   (4.2) 

Setting ( )z x n n  , so that x n z n  , and substituting it into (4.2) leads to 

( ) 1 1

1 1( )

n

n

P X n n z n

z n nP X n n z

  


  

 
 

 
 

,           (4.3) 

so that by utilizing the notation ( )
n n

Z X n n   and  1
n

n  , we can write 

equation (4.3) as 

2

( ) 1

( ) 1

n n

n n n

P Z z

P Z z z

  


    
.           (4.4) 

Since the conditions of Theorem 2.1 of Bagui and Mehra (2020) are satisfied, 

there is a continuously differentiable pdf ( )f z , z   , such that 

( ) ( )n n nP Z z f z dz      and ( ) ( )nP Z z f z dz   for large n . Upon employing 

this approximation, (4.4) would reduce to  

2

( ) 1

( ) 1

n

n n

f z

f z z

 


   
.                      (4.5) 

Now taking logarithms on both sides of (4.5), diving by 
n  and taking limits as 

n  , or equivalently as 0n  , we get   

2

0 0

ln ( ) ln ( ) ln(1 )
lim lim

n n

n n n

n n

f z f z z

   

        
    

    
.       (4.6) 

The left-hand side of (4.6) is simply the derivative of ln ( )f z . By applying the 

L’Hospital’s rule to the right-hand side of (4.6), we get the differential equation 

20

2ln ( )
lim

1n

n

n n

zd f z

dz z 

  
   

   
 z  .                    (4.7)  



 

 

 

 

 

 

 

Bagui and Mehra: The Poisson Distribution and Its Convergence ...                           47 

 

 

 

Integrating the two sides of (4.7) with respect to z  yields the equation  
2ln ( ) 2f z z c    , where c  is the constant of integration.  By exponentiating, we 

obtain  
2 2( ) zf z ke  with the constant k  to be determined so that ( )f z  is a valid 

density, which gives 1 2k  . Thus, we can conclude that the r.v. 

( )
n n

Z X n n   has the limiting standard normal (0,1)N  distribution, as n   ; or 

equivalently,  that the Poisson r.v. nX  follows approximately the normal 

distribution with mean n n   and the variance 2

n n   for sufficiently large n .        

4.2. Stirling Approximation Formula Method 

First, we substitute Stirling’s approximation formula given by (2.1) in the Poisson 

pmf (4.1). Then, after some algebraic simplification, we have 

        ( )nf x  ( )
2 ( )

x

n x x

e n
P X x

x x e








 

1 2 ( )

1 2
2 ( )

x n x

x

n e

n x

  


   

        

( 1 2)

( )1

2

x

n xx
e

nn

 

 


 
 
 

 

( 1 2)

( )

x

n xx
C e

n

 

 


 
 
 

,                                                 (4.8)   

where 1 2C n .  Now taking natural logarithms on both sides of (4.8), we get 

     ln ( ) ln ( 1 2) ln ( )
n

x
P X x C x n x

n
     

 
 
 

.         (4.9) 

As in Section 4.1, set ( )
n n

Z X n n    and ( )z x n n  . The second setting 

implies that x n z n  , (1 )x n z n   and ( )n x n n z n z n      . We re-

express (4.9) as  

                    

 ln ( ) ln ( ) ln ( 1 2) ln 1
n n

P Z z P X x C n z n z n z n           

                                          
2 3

3 2
ln 1 2

2 3

z z z
C n z n z n

n nn
       

 
 
 

  

                                          
2

2
ln 1
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z
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                                          
2

ln 1
2

z
C O n   ,     (4.10)  

so that from (4.10), we obtain for large n  that 

  * ( )nf z 
2

2
( )

z

n
P Z z Ce


  

2
21

2

z

n
e



 ; 

the above equation may also be written as 

𝑓𝑛(𝑥) = 𝑃(𝑋𝑛 = 𝑥) ≈
1

√2𝜋√𝑛
𝑒−

(𝑥−𝑛)2

2𝑛  

The proof is complete.                              
 

4.3. The MGF Method [2] 

Let 
nX  be a Poisson r.v. with pmf as given in (4.1). The mgf of  

nX  can be derived 

as                      

( ) ( )n

n

tX

XM t E e  
0

( )

!

n x
tx

x

e n
e

x






0

( )

!

t x
n

x

ne
e

x






   ( 1)t tn ne n ee e e    .    (4.11)  

Let ( )
n n

Z X n n  , the normed version of 
nX . Below we derive the limiting mgf 

of 
nZ  to get the limiting distribution of 

nZ . In view of (4.11), we obtain the mgf 

of  
nZ  as  

        ( )
( )

n
n

n
Z

X
n

t ntZ t X n n t n
M t E e E e e E e


  

  
    

   

 ( )
nX

t n
e M t n



   1 1

n
n

t
t n t ne n et n

e e e e 
 

 
 
 
 

.     (4.12) 

Now consider the simplification of the exponent term  1
t n

n e   in (4.12) as  

 1
t n

n e 
2 3 4

3 2 2
1 1

(2!) (3!) (4!)
exp[ ( )]

t t t t
n

n n nn
n    

 
 
 

, where ( )n  is a 

number between 0 and t n  and ( ) 0n  , as n  .  The exponent term 

 1
t n

n e   further simplifies to  1
t n

n e 
2 3 4

3 2
( )]

(3!) (4!)(2!)
exp[

t t t
t n

n nn
    . 
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Now substitute this last expression on the RHS of the equation (4.12) for ( )
nZM t  

to obtain 

23 2
2exp[2 3 4[(2!) ] [(3!) ] ( )] [(4!) ]

( ) ( )
n

n

Z

tt t n t n t n nt
M t e e e b n

   
  
 

,     (4.13) 

with 
exp[3 4 3 2[(3!) ] [ ( )]] [(4!) ]

( )
t n t n n

b n e e


  which tends to 1, as n   . The 

equation (4.13) yields 

2 2
lim ( )

n
Z

n

t
M t e



                                                                                               (4.14) 

for all real values of t . By Theorem 2.1, thus, we can conclude from (4.14) that 

( )
n n

Z X n n   has the limiting standard normal distribution. Equivalently, we 

may state that the Poisson r.v. 
nX  follows approximately, for large n , a normal 

distribution with both mean and variance equal to n .          

4.4. The CLT Method 

Let 
1 2, ,Y Y  be a sequence of independent and identically distributed Poisson r.v.’s 

with parameter 1  . Suppose 
1

n

n i

i

X Y


 , then by Theorem 2.3, 
nX  is a Poisson 

r.v. with parameter n  . We also note that 
nX  is the sum of n  i.i.d. r.v.’s with 

mean equal to 1 and the variance also equal to 1.  By the  CLT  stated in Theorem 

2.2, therefore, we may conclude that [( ) ]
n n

Z X n n   (0,1)d N , as n  ; or 

equivalently, that the r.v. 
nX - which is Poisson ( )P n - follows approximately the 

normal distribution with mean n n    and variance 2

n n   for large n .      

Example 4.1 Normal approximation to the Poisson. Each year in Mythica (see 

[9], p. 217), an average of 25 postal delivery persons are bitten by dogs. Suppose 

one wants to know the probability that at least 33 such incidents occur in a 

particular year. The dog-bites being “rare” events, the distribution of the total 

number X - of dog-bites in a year - can be modeled by Poisson ( )P   with the 

mean   as the observed value 25   above.  The exact calculation of the 

probability ( 33)P X   will take some doing. It can be done using incomplete 

-function tables or any statistical computing software such as R. But since   is 

reasonably large, we can use the normal approximation to the Poisson to deduce 



 

 

 

 

 

 

 

50                                     International Journal of Statistical Sciences, Vol. 20(2), 2020 

 

its approximate value much more easily using the standard normal tables. Figure 

4.1 below shows the closeness of the two distributions. 

 

                       Figure 4.1: Plot of Poisson and Normal with mean 25    

The mean of the assumed model is  = 25, while the standard deviation 25 5   . Thus, the 

normal approximation for ( 33)P X   ( (32.5 25) 5)P Z   ( 1.5) 0.0668P Z   , 

whereas the exact probability under Poisson ( )P   distribution with 25  , namely, 

( 33)P X   1 ( 32)P X   is 0.0714 approximately. The approximation error up 

to four decimal places is only 0.0046. The normal tables, thus, can provide a quick 

and fairly accurate answer without the use of cumbersome -function tables or 

any statistical software.    

  

5. Concluding Remarks 

In this article, we have given in the introduction a historical background for the 

Poisson distribution and also mentioned one of its early applications (see 

Bortkewitsch (1898)) in modeling the numbers of Prussian cavalry killed by 

horse-kicks. Later during World war II, Poisson distribution was again employed 

effectively to conclude that the hits of flying bombs (V-1 and V-2 missiles) in 

London were landing at random and not at predetermined targeted spots. We 

discussed some basic properties of the Poisson distribution. We also derived 

Poisson approximations to the binomial and negative-binomial distributions and 

indicated its relationship to other distributions. We showed that a gamma mixture 

of Poisson distributions yields a negative-binomial distribution. Accordingly, 

negative-binomial can be an alternative to the Poisson in modeling similar but 

more complex type rare events data. 
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In Section 4, we presented four different methods of proof of the convergence of 

Poisson to a normal distribution, as the parameter  . These methods are the 

BMP Ratio method and the other three well-known ones based, respectively, on 

the Sterling's formula, the Moment Generating Functions (mgf’s), and that of the 

general Central Limit Theorems (CLT). The new BMP Ratio method uses only a 

basic knowledge of Calculus. The other three, relatively more advanced, are 

respectively: the De-Moivre's approach based on Sterling's formula, the MGF 

method based on Laplace transforms, and that of the general Central Limit 

Theorems based on characteristic functions. These four methods of proof can be 

profitably discussed in a senior classroom setting. Bagui and Mehra (2017, 2019) 

had earlier employed these methods for showing the convergence of binomial and 

negative-binomial to the limiting normal, as the number of trials n  . 
 

The Poisson Paradigm 

As discussed in the preceding sections, Poisson distribution can be employed 

befittingly to model the number of occurrences that can take place over a period of 

time under “rare” events phenomena, such as those described in the introductory 

section, viz., the number of severe earthquakes, traffic accidents, hits of bombs, 

deaths by kicking horses and so on. We shall give a formal shape to this assertion 

in inequality (5.1) below and follow it up with a paradigmic example of its 

application:  

Let 1 2, , , nA A A  be independent (or weakly dependent) “rare” events with 

( ),k kp P A  1 ,k n   kp  being small, 
1

n

n kk
p


  moderate and n large, and 

set nX
1

( )
n

kk
I A


 , where ( )kI A  is equal to 1 if the event kA  occurs, otherwise 

it is 0. Thus, nX  counts the number among events ,kA  1,2, ,k n  that occur. 

Note that 
1

( ) [ ( )]
n

n kk
E X E I A


 1

n

kk
p


 n . Then for large ,n nX  follows 

approximately a Pois( n ) distribution with parameter n . More precisely, if N

denotes a Pois( n ) r.v. and C  any set of non-negative integers, then 

|𝑃(𝑋𝑛 ∈ 𝐶) − 𝑃(𝑁 ∈ 𝐶)| ≤ 𝑚𝑖𝑛 (1,
1

𝜆𝑛
) ∑ 𝑝𝑘 

2𝑛
𝑘=1 ;                                       (5.1) 

 (see [7], p.164 or [15], p.410). The upper bound on the right provides the 

maximum error that may be incurred from using Poisson approximation, not only 

for approximating the probability of a single point but also in approximating the 
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probability of any set. In other words, how small the kp  should be so that 

2

1

n

kk
p

 is very small, or at least very small compared to n . For example, given 

0   we may choose n  sufficiently large so that 
1
max ( )k n

k n
p n 

 
 ; then the 

maximum error would be less than or equal to  .  

As an application, we consider the well-known “birthday” problem: In a group of 

m persons, what is the probability that there is at least one pair in the group who 

have the same birthday? There are n   2

m
 pairs in this group. The probability of 

each pair having the same birthday is equal to P(1
st
 -person and 2

nd
  person both 

have the same birthday “D”) = P(1
st
 -Person has a birthday “D”)P(2

nd
 person has 

birthday “D”|1
st
 -Person has birthday “D”) = 1

365  1 = 1
365

.    By the Poisson 

paradigm, the distribution of nX - the number of birthday matches- is 

approximately Pois( n ) with   1
2365 365

mn
n    for large n . Thus, the probability 

of at least one match is approximately 

( 1) 1 ( 0) 1 n

n nP X P X e


      .       

For m = 23, 253 365n   and 1 0.500ne


  , which is very close to the exact 

probability 0.507 of having at least one match in a group of 23 people. 

This note may serve as a useful pedagogical reference article in senior-level 

probability courses. The material should also be of reading interest for senior 

students in probability and mathematical statistics. The teachers may assign these 

different methods of proof to students as class projects.  
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APPENDIX 

1. Recursive Relations for Moments of P  Distribution 

Let X X  be a Poisson P  r.v., that is, with parameter   ( 0  ) and let 

,( ) ( ) ( )r

r r X E X      denote its rth integral ( 1r  ) moment about the origin. 

Further, let , 1( ) ( ) [ ( )]r

r r X E X        denote its rth (integral) central moment, 

that is, about the mean 1( ) ( )E X   . It is well-known that for the Poisson rX  r.v. 

its mean 1( ) ( )E X    equals   and so does its variance 2 ( )  . The following 

two recursion relations (see equations (A.1) and (A.4) below), respectively for the 

two preceding series of moments, assist us in calculating all their values fairly 

easily.    

I. Recursion Relation for , ( )r X  , 1r  .  

For all integral values 1r  , the following recursion relation holds: 

, ( )

1, ,( ) [ ( ) ]r Xd

r X r X d

 


       ;           (A.1) 

( In fact, since 
0

0, ( ) [ ] 1X E X    , the formula (A.1) holds for 0r   also.) 

To see that the formula (A.1) holds for 1r  , first note that    

 , !0
( )

xrd d e
r Xd d xx

x


 
 




 

1

, ( 1)!1
( )

xr e
r X xx

x
 

 


     

 
, !0

( ) ( 1)
yr e

r X yy
y

 



    , ,( 1)( ) ( )r X r X      ,                (A.2) 

and then also that 
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Now substituting for ,( 1) ( )r X   from (A.2) into (A.3), we obtain the recursion 

relation (A.1) readily.  

Note that the recursion relation (A.1) holds for 0r  also. This is so because, on 

account of 
0, ( ) 1X   , the relation (A.1) if true should yield 

1, ( ) [1 0]X      , 

which being factually true provides the verification.            

II. Recursion Relation for 
, ( ),  1r X r   . 

The following recursion relation also holds for all integral values of 1r  :  

1, ( )r X   , ( )

1,[ ( ) ]r Xd

r X d
r

 


    ;                               (A.4) 

(Again, since 0, ( ) 1X    and 1, ( ) 0X   , the formula (A.4) holds for r 0  also.) 

To see that it holds for all integral 1r  , first note that   

 , ( )r Xd

d

 

 !0
[ ( ) ]

xrd e
d xx

x








 

1

1, , ( 1)!1
( ) ( ) ( )

xr e
r X r X xx

r x
    

 

 
      

 1, , ,( 1)( ) ( ) ( )r X r X r Xr          ,                                          (A.5) 

and then also that 

1

1, !0
( ) ( )

xr e
r X xx

x
  

 

 
  ,!1

( ) ( )
xr e

r Xxx
x x

  



     

          
!0 ,

( 1 ) ( )
xr e

xx r X
x

   



    , 1 ,[ ( ) ( )]r X r X      .                  (A.6) 

Now substituting for , 1( )r X   from (A.5) into (A.6), we obtain the relationship 

(A.4) as follows: 

1, ( ) r X   , ( )

1, , ,[ ( ) ( ) ( )]r Xd

r X r X r Xd
r

 


          , ( )

1[ ( ) ]r Xd

r d
r

 


    .   

The derivation is complete. One can easily see that the relationship (A.4) holds for 

0r   also. This is so because, on account of 0, ( ) 1X   , (A.4) if true should yield 

(0)

1, 1,( ) [0 ( ) ] 0
d

X X d
         , which being true by definition provides the 

verification.                        

2. Derivation of the Formula (1.2) for the CDF XF

of Poisson X  

The derivation of the above formula is as follows: Note that by virtue of 

‘integration by parts’ formula, we have for each integral k , 1 k x  , that 
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1
( 1)

( ) y k

k
A k e y dy






 
   = −𝑒−𝑦 (

𝑦𝑘

𝑘!
) |  +

𝑘

Γ(𝑘+1)𝜆
∞ ∫ 𝑒−𝑦∞

𝜆
𝑦𝑘−1𝑑𝑦 =

𝑒−𝜆𝜆𝑘

𝑘!
+ 𝐴(𝑘 − 1).    (A.7)    

Summing both sides of (A.7) over 1 k x  , we obtain 
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kx x x
e

kk k k
A k A k

 

  
    ,                    (A.8) 

or equivalently, upon canceling the sum 
1

0
( )

x

k
A k



 on opposite sides of (A.8), that 
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e

xk
A x




 (0)A  ( )XF x


  for all 0x .    

This is exactly the formula (1.2), viz., for all integral 0x  

( ) ( )XF x P X x
     1

( 1)
0 !

kx
y x
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  .       (A.9) 

The derivation is complete.      

An alternative derivation of the formula (1.2) is as follows: 

Since by the definition of Gamma function 
0

( 1) x k tx k t e dt


       (see [13], p. 

67), for each integral 0x ,  
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   ,        (A.10) 

so that by interchanging the summation and integration signs in (A.10), we obtain 

( ) ( )XF x P X x
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e t dt 
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y x
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


 
    for all integral 0x ,    (A.11) 

where for the last two equalities in (A.11), we have used, respectively, the 

binomial summation and a change in the variable of integration from t  to y 

t  . The equation (A.11) is precisely the same as (A.9) or (1.2). The derivation 

is complete.       

 


