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Abstract 
 

The multivariate normal (MVN) distribution is often considered to be the underlying 

distribution of many observed samples for modelling purposes, and hence simulation 

from this distribution is required to verify the fitted model. The decomposition based 

approach is currently being used to simulate sample from MVN distribution whose 

building block is Cholesky or Eigen decomposition. Although the decomposition 

approach is routinely used to generate MVN in almost all statistical packages (R, SAS, 

Stata), but this approach may have a numerical issue (Ripley, 1987). Unfortunately, there 

is no other alternative of this approach to generate sample from MVN density. Motivated 

by this problem, we develop an alternative method to generate sample from MVN density 

whose building block is rejection sampling. Through simulation study, we demonstrate 

the validity and efficiency of the proposed method. 

Keywords: Gibbs sampling, Ratio-of-Uniforms, Rejection sampling. 

AMS Classification: 62D05. 

 

1. Introduction 

MVN density is one of the most widely used distributions in Statistics, Computer 

science and other discipline as an underlying distribution of many observed 

samples for modelling purpose. Therefore, there is a need to simulate sample from 

MVN density to justify their consideration as an underlying distribution of 

observed sample. For example, suppose we have observed sample 𝑿 = (𝑥𝑖1,

𝑥𝑖2, . . . , 𝑥𝑖𝑑), 𝑖 = 1, 2, . . . , 𝑛, from 𝑑 dimensional normal density with mean vector, 
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𝝁 = 𝝁𝟎  and variance covariance matrix, 𝚺 = 𝚺𝟎, and we wish to estimate 𝝁𝟎 and 

𝚺𝟎 in Bayesian approach. For simplicity, we consider, 𝚺𝟎 is known here and we 

need to estimate 𝝁𝟎  only. Choosing 𝑑  dimensional normal density with mean 

vector 𝑎0 and variance covariance matrix 𝐵0 (which are known) as a prior density 

for unknown mean vector 𝝁 yields a posterior distribution of 𝝁 (likelihood × prior 

distribution of), which is also 𝑑 dimensional normal density. The parameters of 

the posterior density, 𝑑 dimensional normal density, are the function of  𝑿, 𝑎0 and 

𝐵0. Point estimate of 𝝁𝟎 can be obtained by taking mean of the generated sample 

(𝑁 draws) from the posterior density (𝑑 dimensional normal density). Currently, 

there is only one approach available in the literature for generating sample from 

multivariate normal density, which is decomposition based approach: Eigen and 

Cholesky. De- composition based approach is currently being widely used in 

almost all statistical packages (R, SAS, Stata) to generate sample from d-

dimensional normal density. 

However, Eigen and Cholesky decomposition methods may get stuck 

(numerically instable) for a particular covariance matrix (Ripley, 1987). There is, 

therefore, a need for an alternative method which does not require any 

decomposition. 

Motivated by the above problems, we develop an alternative method based on 

rejection sampling for generating sample from multivariate normal density. Our 

proposed method does not require any decomposition to simulate sample from 

MVN density. 

We organize the rest of the paper as follows: Section 2 introduces some important 

terminologies used in this paper. Our proposed method for MVN generation is 

discussed in Section 3. Section 4 presents the simulation setting required to check 

the performance of our proposed method. The results and discussions of our sim- 

ulation study are presented in Section 5. In the penultimate section, we present an 

application of MVN density which is followed by conclusion and future work 

presented in Section 7. 
 

2. MVN and Related Terminologies 

In this section, we introduce multivariate normal density and related terminologies 

required to generate from MVN. We here used the text book written by Johnson 

and Wichern, Robert and Casella and the paper written by Metropolis et al. to 
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prepare the following overview of related terminologies necessary to generate 

sample from MVN (Johnson & Wichern, 2002; Casella & Burger, 2001 and 

Metropolis et al., 1953).  

2.1. Multivariate Normal Distribution 

The multivariate normal distribution is a generalization of univariate normal dis- 

tribution to two or more variables. If the d-dimensional random vector, 𝑿 =
[𝑋1,  𝑋2,  𝑋3, … , 𝑋𝑑] has mean vector, 𝝁, and a symmetric positive definite covari- 

ance matrix, Σ, then 𝑿 has the following MVN density  

𝑓(𝑿|𝝁, 𝚺) = 
1

(2𝜋)𝑑 2⁄ |𝚺|
1
2

 exp {−
1

2
(𝑿 − 𝝁)𝑇𝚺−1(𝑿 − 𝝁)},  

where  −∞ < 𝑋𝑖 < ∞, 𝑖 = 1, 2  . . , 𝑑.  

2.2. Markov Chain 

Suppose we have two countable sets: one for state space 𝑆 = 1, 2, . . . , 𝑟 and other 

for time space 𝑇 = 1, 2, . . . , 𝑛 . Then a discrete time and discrete state space 

Markov chain is a sequence 𝑋1, 𝑋2, ⋯ , 𝑋𝑛−1, 𝑋𝑛  of a random variable taking 

values in 𝑆  at time 𝑇  which follows the following Markov property Pr(𝑋𝑛 ∈

𝑆|𝑋1 = 𝑥1, ⋯ , 𝑋𝑛−1 = 𝑥𝑛−1 ) = Pr(𝑋𝑛 ∈ 𝑆|𝑋𝑛−1 = 𝑥𝑛−1 ) i.e. the probability of 

moving to the next state depends on its immediate state not the other previous 

states. If the state space S is continuous then we call the Markov chain discrete 

time continuous state space Markov chain. The state space 𝑆 can be discrete or 

continuous or mix.  

2.3. Ergodic Theorem 

An aperiodic, irreducible Markov chain with transitional kernel 𝑄 and stationary 

distribution 𝜋  is ergodic, so that the ergodic average  ℎ̅𝑛 =
1

𝑛
∑ ℎ(𝑋𝑡) →𝑛

𝑖=1

𝐸𝜋[ℎ(𝑋)] as 𝑛 → ∞ where 𝐸𝜋[ℎ(𝑋)] = ∫ℎ(𝑥) 𝜋(𝑥) 𝑑𝑥.  

2.4. MCMC 

MCMC methods provide a way of simulating random variables from an arbitrary 

density 𝜋(𝜃), where 𝜋(𝜃) needs only be known up to a normalizing constant, and 

𝜃 can be a high dimensional. The basis for MCMC methods is the combination of 

convergence and ergodic properties of a Markov chain. The basic idea is: (i) to 

sample from distribution 𝜋(𝜃)  simulate a Markov chain with stationary 
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distribution 𝜋 (ii) to estimate any function of density 𝜋 use the ergodic average of 

the chain. Two most commonly used MCMC techniques are Metropolis-Hastings 

(MH) and Gibbs sampling algorithms, and both of these techniques can be used to 

simulate random variables from an arbitrary density (possibly multivariate) known 

up to normalizing constant. In this paper, we have considered only Gibbs 

sampling algorithm to simulate random sample from multivariate normal density. 

2.5. Gibbs Sampling  

Gibbs sampling method is particularly used to generate samples from high 

dimensional distributions which are mathematically intractable (known up to 

normality constant). Geman and Geman (1984) introduced Gibbs sampling to 

simulate sample from high dimensional distributions (Geman & Geman, 1984). 

Gibbs sampling works by deriving 𝑑 number of full conditional distributions to 

simulate sample from a 𝑑-dimensional posterior density (Geman & Geman, 1984). 

Simulating from 𝑑 number of full conditional distributions is same as simulating 

from a 𝑑-dimensional distribution. It is a special type of sampling where each 

proposal is accepted. A general Gibbs sampling method is discussed in Algorithm 

1, where 𝑋1,  𝑋2,  𝑋3, … , 𝑋𝑑 be the random variates and their initial values are set 

to 𝑥1
(0) , 𝑥2

(0), . . . , 𝑥𝑑
(0) . However, the observations generated through Gibbs 

sampling are correlated with each other. Therefore, for independent sample 

special care must be taken, which is essential for valid inference.  

 

Algorithm 2: Gibbs Sampling 

Input: Initial values of the variates. 

Output: Sample from the target density. 

Begin 

  Set 𝑥(0) = (𝑥1
(0)

, 𝑥2
(0)

, . . . , 𝑥𝑑
(0)

) 

       For 𝑖 = 1, 2,⋯⋯ , 𝑛 do 

           1.   𝑋1
(𝑖)

 ~ 𝑝(𝑋1|𝑋2 = 𝑥2
(𝑖−1)

, 𝑋3 = 𝑥3
(𝑖−1)

, . . . , 𝑋𝑑 = 𝑥𝑑
(𝑖−1)

), 

          2.  𝑋2
(𝑖)

 ~ 𝑝(𝑋2|𝑋1 = 𝑥1
(𝑖)

, 𝑋3 = 𝑥3
(𝑖−1)

, . . . , 𝑋𝑑 = 𝑥𝑑
(𝑖−1)

), 

                              

3.  𝑋𝑑
(𝑖)

 ~ 𝑝(𝑋𝑑|𝑋1 = 𝑥1
(𝑖)

, , 𝑋2 = 𝑥2
(𝑖)

, , . . . , 𝑋𝑑−1 = 𝑥𝑑−1
(𝑖)

 ). 

       End For loop 

End Begin  
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2.6. Ratio-of-Uniforms Method  

Ratio-of-Uniforms (RoU) method invented by Wakefield et al. (1991) is a random 

variates generation technique to generate samples from an arbitrary probability 

density (Wakefield, Gelfand, & Smith, 1991). This method is based on 

acceptance-rejection framework though it does not require any proposal density to 

sample from an arbitrary probability density like the conventional acceptance-

rejection method. Suppose our aim is to simulate from a 𝑑-dimensional density, 

𝑓(𝑿) =  
𝑓1(𝑿)

∫ 𝑓1(𝑿)𝑑𝑿
=

𝑓1(𝑿)

𝐶
∝ 𝑓1(𝑿) , where 𝐶 = 𝑓1(𝑿)𝑑𝑿  is the normalizing 

constant. If 𝑓1(𝑿) is a positive integrable function over 𝜒, a subset of ℝ𝑑 and the 

variables (𝑈, 𝑉1, . . . , 𝑉𝑑)  are uniformly distributed on 𝑅 = {(𝑈, 𝑉1, . . . , 𝑉𝑑): 0 <

𝑈 ≤ [𝑓1 (
𝑉1

𝑈
, . . . ,

𝑉𝑑

𝑈
)]

1

𝑑+1
},  then 𝑿 = (𝑋1, 𝑋2, . . . , 𝑋𝑑) , where 𝑋𝑖 =

𝑉𝑖

𝑈
, has density  

𝑓1(𝑿)

∫𝑓1(𝑿)𝑑𝑿
= 𝑓(𝑿)  (Wakefield, Gelfand, & Smith, 1991). The region 𝑅  will be 

enclosed within a bounding 𝑑-dimensional rectangle subject to the condition that, 

𝑓1(𝑿)  and 𝑥𝑖
𝑑+1𝑓1(𝑿)  are bounded over 𝜒 . For, 𝑖 = 1, 2  . . , 𝑑 , Kinderman and 

Monahan (1977) used the rectangle 0 < 𝑢 ≤ 𝑎,   𝑏𝑖
− ≤ 𝑣𝑖 ≤ 𝑏𝑖

+ , where (i) 𝑎 =

𝑠𝑢𝑝𝜒[𝑓1(𝑿)]
1

𝑑+1 , (ii) 𝑏𝑖
− = 𝑖𝑛𝑓𝜒𝑖

−𝑥𝑖[𝑓1(𝑿)]
1

𝑑+1 , 𝑖 = 1, 2  . . , 𝑑  and (iii) 𝑏𝑖
+ =

𝑠𝑢𝑝𝜒𝑖
+𝑥𝑖[𝑓1(𝑿)]

1

𝑑+1 , 𝑖 = 1, 2  . . , 𝑑  with 𝜒𝑖
− = {𝒙 ∈ 𝜒: 𝑥𝑖 ≤ 0} ,  𝜒𝑖

+ =

{𝒙 ∈ 𝜒: 𝑥𝑖 ≥ 0}. The theoretical probability of acceptance will be the volume of 𝑅 

relative to that of the enclosing 𝑑 -dimensional rectangle and it is given by, 

𝑃𝑎 =
∫𝑓1(𝑿)𝑑𝑿

𝑎(𝑑+1)∏ (𝑏𝑖
−−𝑏𝑖

+)𝑑
𝑖=1

. 

However, the target density can be symmetric or asymmetric. For symmetric 

unimodal densities Kinderman and Monahan showed that the probability of 

acceptance is maximized when mode of these densities is relocated to zero which 

is stated below in Theorem 1 (Kinderman & Monahan, 1977). 

Theorem 1: Without loss of generality mode (𝑿 =  𝝁) of a positive symmetric 

function 𝑓1(𝑿) defined on ℝ can be rescaled to 𝑿 =  �⃗⃗� . Furthermore, provided 

that  𝑠𝑢𝑝𝜒[𝑓1(𝑿)]
1

𝑑+1 < ∞,  then sampling from 𝑓1(𝑿) is equivalent to sampling 

from 𝑓1(𝑿 − 𝝁). Under these conditions, 𝑃𝑎  is maximized when  𝝁 =  �⃗⃗� . The 
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proof of the above theorem is not considered here but available in their paper. The 

procedure to simulate a sample of size n from 𝑑-dimensional density via RoU 

method is discussed in Algorithm 2. 
 

Algorithm 2: Algorithm of RoU 

Input: Constraints 𝑎,  𝑏𝑖
− ,  𝑏𝑖

+, where  𝑖 = 1, 2  . . , 𝑑. 

Output: Sample from the target density. 

Begin 

      For 𝑖 = 1, 2,⋯⋯ , 𝑛 do 

          1.  Generate 𝑈1, 𝑈2, . . . , 𝑈𝑑+1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

          2.  Calculate 𝑈 = 𝑎 × 𝑈1, 𝑉𝑖 =  𝑏𝑖
− + ( 𝑏𝑖

+ −  𝑏𝑖
−) × 𝑈𝑖+1 

          3.  𝑰𝒇  𝑈 ≤ [𝑓1 (
𝑉1

𝑈
, . . . ,

𝑉𝑑

𝑈
)]

1

𝑑+1
 then 

                    • 𝑋 = (
𝑉1

𝑈
, . . . ,

𝑉𝑑

𝑈
) 

               Else  

                    • Go back to step 1 

              End If 

       End For loop 

 End Begin  
 

2.7. Modified Ratio-of-Uniforms Method 

Wakefield et al. (1991) modified the basic version of ratio-of-uniforms method for 

the sake of increasing the efficiency in terms of acceptance rate of a point 

generated in the bounding rectangle (Wakefield, Gelfand, & Smith, 1991). In the 

modified ratio-of-uniforms (MRoU) method, a more general version of basic 

ratio-of-uniforms was proposed by introducing a new function 𝑔, which is strictly 

increasing differentiable function on ℝ+
 such that 𝑔 (0)  =  0. The more general 

version of basic ratio-of-uniforms method was proposed by Wakefield et al. 

(1991) which is stated in Theorem 2 (Wakefield, Gelfand, & Smith, 1991). 

Theorem 2: For a strictly increasing differentiable function g defined on ℝ+
 such 

that g (0) = 0, if the joint density of (d+1) uniform random variables uniformly 

distributed on 𝑅 = {(𝑈, 𝑉1, . . . , 𝑉𝑑): 0 < 𝑈 ≤ 𝑔−1 [𝑘𝑓1 (
𝑉1

𝑔´(𝑈)
, . . . ,

𝑉𝑑

𝑔´(𝑈)
)]}, where k 

> 0 is a constant while 𝑔´and 𝑔−1 are the first derivative of the function 𝑔 and its 
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inverse function respectively, then 𝑿 = (𝑋1, 𝑋2, . . . , 𝑋𝑑) , where 𝑋𝑖 =
𝑉𝑖

𝑔´(𝑈)
 has 

density  𝑓(𝑿) =
𝑓1(𝑿)

𝐶
∝ 𝑓1(𝑿). The region 𝑅 will be enclosed within a bounding 

𝑑-dimensional rectangle subject to the condition that, 𝑓1(𝑿) and 𝑥𝑖
𝑟𝑑+1𝑓1(𝑿)𝑟 are 

bounded over 𝜒. From the proof, it is observed that the MRoU method reduces to 

basic form of RoU method when  𝑟 =  1 . For 𝑖 = 1, 2  . . , 𝑑 , Kinderman and 

Monahan used the rectangle 0 < 𝑢 ≤ 𝑎,   𝑏𝑖
− ≤ 𝑣𝑖 ≤ 𝑏𝑖

+ , where (i) 𝑎(𝑟) =

𝑠𝑢𝑝𝜒[𝑓1(𝑿)]
1

𝑟𝑑+1 , (ii) 𝑏𝑖
−(𝑟) = 𝑖𝑛𝑓𝜒𝑖

−𝑥𝑖[𝑓1(𝑿)]
𝑟

𝑟𝑑+1 , and (iii) 𝑏𝑖
+(𝑟) =

𝑠𝑢𝑝𝜒𝑖
+𝑥𝑖[𝑓1(𝑿)]

𝑟

𝑟𝑑+1  with 𝜒𝑖
− = {𝒙 ∈ 𝜒: 𝑥𝑖 ≤ 0} ,  𝜒𝑖

+ = {𝒙 ∈ 𝜒: 𝑥𝑖 ≥ 0} ,  𝑖 =

1, 2  . . , 𝑑 (Kinderman & Monahan, 1977).  
 

Algorithm 3: Algorithm of MRoU 

Input: Constraints 𝑎(𝑟), 𝑏𝑖
−(𝑟) , 𝑏𝑖

+(𝑟) where  𝑖 = 1, 2  . . , 𝑑. 

Output: Sample from the target density. 

Begin 

       For 𝑖 = 1, 2,⋯⋯ , 𝑛 do 

1. Generate 𝑈1, 𝑈2, . . . , 𝑈𝑑+1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

2. Calculate 𝑈 = 𝑎(𝑟) × 𝑈1, 𝑉𝑖 =  𝑏𝑖
−(𝑟) + ( 𝑏𝑖

+(𝑟) −  𝑏𝑖
−(𝑟)) × 𝑈𝑖+1 

3. If 𝑈 ≤ [𝑓1 (
𝑉1

𝑈𝑟 , . . . ,
𝑉𝑑

𝑈𝑟)]

1

𝑟𝑑+1
 then 

                     • 𝑋 = (
𝑉1

𝑈𝑟
, . . . ,

𝑉𝑑

𝑈𝑟
) 

                 Else  

                    • Go back to step 1 

                 End If 

          End For loop 

  End Begin  

The theoretical probability of acceptance will be the volume of 𝑅 relative to that 

of the enclosing 𝑑-dimensional rectangle and it is given by,  

𝑃𝑎 =
∫𝑓1(𝑿)𝑑𝑿

(𝑟𝑑 + 1)𝑎(𝑟)∏ ((𝑏𝑖
−(𝑟) − 𝑏𝑖

+(𝑟))𝑑
𝑖=1

. 
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This acceptance probability is a function of r as all the quantities 𝑎(𝑟), 𝑏𝑖
−(𝑟) and 

𝑏𝑖
+(𝑟) depend on 𝑟. Thus, 𝑃𝑎 needs to be maximized with respect to 𝑟 to get a high 

acceptance rate, which is the measure of efficiency of an acceptance-rejection 

algo- rithm. Finally, relocation of the distribution by the mode is suggested by 

Wakefield et al. before optimizing 𝑃𝑎 over 𝑟 in the MRoU method, which yields 

higher accep- tance rate (Wakefield, Gelfand, & Smith, 1991). The procedure to 

simulate a sample of size n from d-dimensional density via MRoU method is 

discussed in Algorithm 3. 

2.8. Mardia’s Test 

Mardia’s test proposed by Mardia (1970) can be used to check whether a sample 

data come from a multivariate normal distribution or not (Mardia, 1970). This test 

can be seen as a multivariate extension of skewness and kurtosis measures. The 

algorithm of this test is: (i) 𝐻0 : the data come from multivariate normal against 

𝐻𝑎 : the data come from different distribution. (ii) The following quantities denote 

the test statistics of Mardia’s test, 𝐴 =
1

6𝑛
∑ ∑ [(𝑥𝑖 − �̅�)𝑇Σ̂(𝑥𝑖 − �̅�)]

3𝑛
𝑗−1

𝑛
𝑖−1 , 

𝐵 = √
𝑛

8𝑑(𝑑+2)
[
1

𝑛
∑ {(𝑥𝑖 − �̅�)𝑇Σ̂(𝑥𝑖 − �̅�)}

2
− 𝑑(𝑑 + 2)𝑛

𝑖=1 ] , where Σ̂ =

1

𝑛
∑ Σ̂(𝑥𝑗 − �̅�)𝑛

𝑗=1 (𝑥𝑗 − �̅�)
𝑇

. (iii) 𝐴~𝜒(ℎ)
2 , ℎ =

1

6
𝑑(𝑑 + 1)(𝑑 + 2)  and 𝐵~𝑁(0,1) 

approximately under 𝐻0  and reject the null hypothesis if 𝐴 > 𝜒(1−∝,ℎ)
2 , where 

𝜒(1−∝,ℎ)
2  is the (1−∝)𝑡ℎ  upper quantile of the 𝜒2  distribution with ℎ degrees of 

freedom and if 𝐵 > 𝐵∝

2
, where 𝐵∝

2
 is the (1 −

∝

2
)𝑡ℎ upper quantile of the standard 

normal distribution.  

 

3. Proposed Method for Multivariate Normal Generation  

We have proposed a new approach in this section to generate random sample from 

MVN density. The building block of our proposed method is rejection sampling 

scheme: (i) Gibbs Sampling, (ii) Ratio-of-Uniforms (RoU) and (iii) Modified 

Ratio-of-Uniforms (MRoU). We call our method RSSMVN as rejection sampling 

scheme is used to generate sample from MVN. Furthermore, the RSSMVN is 

denoted as RSSMVNG, RSSMVNR and RSSMVNR* when it uses Gibbs, RoU 

and MRoU as its building block respectively. In this section we have discussed the 
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methodology of our proposed RSSMVN and its implementation technique for 

𝑑 = 2 and 𝑑 =  3.  

3.1. BVN Generation via RSSMVN  

This section discusses how RSSMVN generates sample from multivariate normal 

density when  d   =   2.   The   density   function of BVN distribution is 𝑓(𝑿|𝝁, 𝚺) 

= 
1

(2𝜋)|𝚺|
1
2

 exp {−
1

2
(𝑿 − 𝝁)𝑇𝚺−1(𝑿 − 𝝁)} , where −∞ < 𝜇, 𝑋 < ∞  and the mean 

vector and covariance matrix are 𝝁 = (𝜇1 𝜇2)𝑇  and 𝚺 = (
𝜎11 𝜎12

𝜎12 𝜎22
) 

respectively.  

3.1.1. RSSMVNG Method 

To generate sample from BVN density via RSSMVNG, it derives the conditional 

distributions of  𝑋1|𝑋2 = 𝑥2 and 𝑋2|𝑋1 = 𝑥1. All required calculations to derive 

the conditional distributions of 𝑋1|𝑋2 = 𝑥2 and 𝑋2|𝑋1 = 𝑥1 are shown in detail. 

Deriving full conditional distributions require the simplification of exponent part 

of BVN density which involves Σ−1 = 𝐷−1(𝜎22𝜎11 − 𝜎12
2 ). After simplifying the 

exponent part, the density function 𝑓(𝑿|𝝁, 𝚺) becomes 

1

(2𝜋)|𝚺|
1
2

 exp {−0.5𝐷−1[𝜎22(𝑋1 − 𝜇1)
2 − 2𝜎12(𝑋1 − 𝜇1)(𝑋2 − 𝜇2) + 𝜎11(𝑋2 −

𝜇2)
2]}.  

Considering 𝑋2 = 𝑥2 in 𝑓(𝑿|𝝁, 𝚺) yields the full conditional distribution of 𝑋1, 

𝑓(𝑋1|𝑋2 = 𝑥2) =
1

(2𝜋)|𝚺|
1
2

exp{−0.5𝐷−1[𝜎22(𝑋1 − 𝜇1)
2 − 2𝜎12(𝑋1 − 𝜇1)(𝑥2 −

𝜇2) + 𝜎11(𝑥2 − 𝜇2)
2]} =  

1

(2𝜋)|𝚺|
1
2

𝐾 exp {
𝜎22

2𝐷
[𝑋1 − 𝜇1 −

𝜎12(𝑥2−𝜇2)

𝜎22
]
2

}, 

where 𝐾  is a constant involving 𝑥2 . After simplification, the full conditional 

distribution of 𝑋1|𝑋2 = 𝑥2 can be written as 

                                 𝑋1|𝑋2 = 𝑥2~𝑁 (𝜇1 +
𝜎12(𝑥2−𝜇2)

𝜎22
,

𝐷

𝜎22
). 

Similarly, considering 𝑋1 = 𝑥1 yields the following full conditional distribution of 

𝑋2|𝑋1 = 𝑥1, 

                                 𝑋2|𝑋1 = 𝑥1~𝑁 (𝜇2 +
𝜎12(𝑥1−𝜇1)

𝜎11
,

𝐷

𝜎11
). 
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The above procedures for generating sample from BVN density via RSSMVNG is 

summarized in Algorithm 4. Algorithm 4 needs to be run 𝑛 times to get a sample 

of size 𝑛. 

Algorithm 4: RSSMVNG for 𝑑 = 2 

Input: Initial values of  𝑋1 and 𝑋2. 

Output: Sample from the BVN. 

Begin 

      Set 𝑥(0) = (𝑥1
(0)

, 𝑥2
(0)

). 

           For 𝑖 = 1, 2,⋯⋯ , 𝑛 do 

1. 𝑋1
(𝑖)

 ~ 𝑁 (𝜇1 +
𝜎12(𝑥2

(𝑖−1)−𝜇2)

𝜎22
,

𝐷

𝜎22
) 

2. 𝑋2
(𝑖)

 ~ 𝑁 (𝜇2 +
𝜎12(𝑥1

(𝑖)−𝜇1)

𝜎11
,

𝐷

𝜎11
) 

           End For loop 

 End Begin  

 

3.1.2. RSSMVNR Method 

This section shows how the RSSMVNR generates sample from BVN density. The 

BVN probability density defined in Section 3.1. can be written as 𝑓(𝑿|𝝁, 𝚺) =
𝑓1(𝑿)

𝐶
∝ 𝑓1(𝑿) , where 𝐶 = (2𝜋)|𝚺|

1

2  and 𝑓1(𝑿) =  exp {−
1

2𝐷
[𝜎22(𝑋1 − 𝜇1)

2 −

2𝜎12(𝑋1 − 𝜇1)(𝑋2 − 𝜇2) + 𝜎11(𝑋2 − 𝜇2)
2]}. The following quantities need to be 

calculated to simulate sample from BVN via RSSMVNR: 

(i) 𝑎 = 𝑠𝑢𝑝𝜒[𝑓1(𝑿)]
1

3 = 𝑠𝑢𝑝𝜒 [exp {−
1

2𝐷
[𝜎22(𝑋1 − 𝜇1)

2 −

2𝜎12(𝑋1 − 𝜇1)(𝑋2 − 𝜇2) + 𝜎11(𝑋2 − 𝜇2)
2]}]

1

3
, 

(ii) 𝑏1
− = 𝑖𝑛𝑓𝜒1

−𝑋1[𝑓1(𝑿)]
1

3 = 𝑖𝑛𝑓𝜒1
−𝑋1 [exp {−

1

2𝐷
[𝜎22(𝑋1 − 𝜇1)

2 −

2𝜎12(𝑋1 − 𝜇1)(𝑋2 − 𝜇2) + 𝜎11(𝑋2 − 𝜇2)
2]}]

1

3
, 
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(iii) 𝑏1
+ = 𝑠𝑢𝑝𝜒1

+𝑋1[𝑓1(𝑿)]
1

3 = 𝑠𝑢𝑝𝜒1
+𝑋1 [exp {−

1

2𝐷
[𝜎22(𝑋1 − 𝜇1)

2 −

2𝜎12(𝑋1 − 𝜇1)(𝑋2 − 𝜇2) + 𝜎11(𝑋2 − 𝜇2)
2]}]

1

3
, 

(iv) 𝑏2
− = 𝑖𝑛𝑓𝜒2

−𝑋2[𝑓1(𝑿)]
1

3 = 𝑖𝑛𝑓𝜒2
−𝑋2 [exp {−

1

2𝐷
[𝜎22(𝑋1 − 𝜇1)

2 −

2𝜎12(𝑋1 − 𝜇1)(𝑋2 − 𝜇2) + 𝜎11(𝑋2 − 𝜇2)
2]}]

1

3
 and  

(v) 𝑏2
+ = 𝑠𝑢𝑝𝜒2

+𝑋2[𝑓1(𝑿)]
1

3 = 𝑠𝑢𝑝𝜒2
+𝑋2 [exp {−

1

2𝐷
[𝜎22(𝑋1 − 𝜇1)

2 −

2𝜎12(𝑋1 − 𝜇1)(𝑋2 − 𝜇2) + 𝜎11(𝑋2 − 𝜇2)
2]}]

1

3
, 

where 𝜒𝑖
− = {𝑿 ∈ 𝜒: 𝑋𝑖 ≤ 0} ,  𝜒𝑖

+ = {𝑿 ∈ 𝜒: 𝑋𝑖 ≥ 0} ,  𝑖 = 1, 2 . Analytical 

calculation of the values of 𝑎, 𝑏1
−, 𝑏1

+, 𝑏2
−, 𝑏2

+ are difficult. Therefore, we have used 

‘genoud’ function in R under ‘rgenoud’ package to calculate these values. The 

detail procedure of RSSMVNR to simulate sample from BVN is summarised in 

algorithm 5. Finally, we calculate the probability of acceptance (𝑃𝑎) by plugging 

in the values of 𝑎, 𝑏1
−, 𝑏1

+, 𝑏2
−, 𝑏2

+ in 𝑃𝑎 =
𝐶

3𝑎 ∏ (𝑏𝑖
−− 𝑏𝑖

+)2
𝑖=1

. 

Algorithm 5: RSSMVNR for 𝑑 = 2 

Input: Constraints 𝑎, 𝑏1
−, 𝑏1

+, 𝑏2
−, 𝑏2

+. 

Output: Sample from the BVN. 

Begin 

       For 𝑖 = 1, 2,⋯⋯ , 𝑛 do 

1. Generate 𝑈1, 𝑈2, 𝑈3~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

2. Calculate 𝑈 = 𝑎 × 𝑈1 , 𝑉1 =  𝑏1
− + ( 𝑏1

+ −  𝑏1
−) × 𝑈2  and 

𝑉2 =  𝑏2
− + ( 𝑏2

+ −  𝑏2
−) × 𝑈3. 

3.  If 𝑈 ≤ [𝑓1 (
𝑉1

𝑈
,
𝑉2

𝑈
)]

1

3
 then 

                              • 𝑿 = (
𝑉1

𝑈
,
𝑉2

𝑈
) 

                         Else  

                           • Go back to step 1 

                        End If 

         End For loop 

  End Begin  
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3.1.3. RSSMVNR* Method 

This section shows how the RSSMVNR* generates sample from BVN density. 

The BVN probability density defined in Section 3.1. can be written as 

𝑓(𝑿|𝝁, 𝚺) =
𝑓1(𝑿)

𝐶
∝ 𝑓1(𝑿) , where 𝐶 = (2𝜋)|𝚺|

1

2  and 

𝑓1(𝑿) =  exp {−
1

2𝐷
[𝜎22(𝑋1 − 𝜇1)

2 − 2𝜎12(𝑋1 − 𝜇1)(𝑋2 − 𝜇2) + 𝜎11(𝑋2 −

𝜇2)
2]}. The following quantities need to be calculated to simulate sample from 

BVN via RSSMVNR*: 

(i) 𝑎(𝑟) = 𝑠𝑢𝑝𝜒[𝑓1(𝑿)]
1

2𝑟+1 = 𝑠𝑢𝑝𝜒 [exp {−
1

2𝐷
[𝜎22(𝑋1 − 𝜇1)

2 −

2𝜎12(𝑋1 − 𝜇1)(𝑋2 − 𝜇2) + 𝜎11(𝑋2 − 𝜇2)
2]}]

1

2𝑟+1
, 

(ii) 𝑏1
−(𝑟) = 𝑖𝑛𝑓𝜒1

−𝑋1[𝑓1(𝑿)]
𝑟

2𝑟+1 = 𝑖𝑛𝑓𝜒1
−𝑋1 [exp {−

1

2𝐷
[𝜎22(𝑋1 − 𝜇1)

2 −

2𝜎12(𝑋1 − 𝜇1)(𝑋2 − 𝜇2) + 𝜎11(𝑋2 − 𝜇2)
2]}]

𝑟

2𝑟+1
, 

(iii) 𝑏1
+(𝑟) = 𝑠𝑢𝑝𝜒1

+𝑋1[𝑓1(𝑿)]
𝑟

2𝑟+1 = 𝑠𝑢𝑝𝜒1
+𝑋1 [exp {−

1

2𝐷
[𝜎22(𝑋1 − 𝜇1)

2 −

2𝜎12(𝑋1 − 𝜇1)(𝑋2 − 𝜇2) + 𝜎11(𝑋2 − 𝜇2)
2]}]

𝑟

2𝑟+1
, 

(iv) 𝑏2
−(𝑟) = 𝑖𝑛𝑓𝜒2

−𝑋2[𝑓1(𝑿)]
𝑟

2𝑟+1 = 𝑖𝑛𝑓𝜒2
−𝑋2 [exp {−

1

2𝐷
[𝜎22(𝑋1 − 𝜇1)

2 −

2𝜎12(𝑋1 − 𝜇1)(𝑋2 − 𝜇2) + 𝜎11(𝑋2 − 𝜇2)
2]}]

𝑟

2𝑟+1
 and 

(v) 𝑏2
+(𝑟) = 𝑠𝑢𝑝𝜒2

+𝑋2[𝑓1(𝑿)]
𝑟

2𝑟+1 = 𝑠𝑢𝑝𝜒2
+𝑋2 [exp {−

1

2𝐷
[𝜎22(𝑋1 − 𝜇1)

2 −

2𝜎12(𝑋1 − 𝜇1)(𝑋2 − 𝜇2) + 𝜎11(𝑋2 − 𝜇2)
2]}]

𝑟

2𝑟+1
, 

Where 𝜒𝑖
− = {𝑿 ∈ 𝜒: 𝑋𝑖 ≤ 0} ,  𝜒𝑖

+ = {𝑿 ∈ 𝜒: 𝑋𝑖 ≥ 0} ,  𝑖 = 1, 2 . Analytical 

calculation of the value of 𝑎(𝑟), 𝑏1
−(𝑟), 𝑏1

+(𝑟), 𝑏2
−(𝑟), 𝑏2

+(𝑟) is difficult. Therefore, 

we have used ‘genoud’ function in R under ‘rgenoud’ package to calculate these 

values. The detail procedure of RSSMVNR* to simulate sample from BVN is 

summarised in algorithm 6. Finally, we calculate the probability of 

acceptance(𝑃𝑎) by plugging in the values of 𝑎(𝑟), 𝑏1
−(𝑟), 𝑏1

+(𝑟), 𝑏2
−(𝑟), 𝑏2

+(𝑟) in 

𝑃𝑎 =
𝐶

(2𝑟+1)𝑎(𝑟)∏ (𝑏𝑖
−(𝑟)− 𝑏𝑖

+(𝑟))2
𝑖=1

. The value of 𝑟 that maximizes the expression 

of 𝑃𝑎  is the optimal value of 𝑟. Mathematical analysis reveals that 𝑟 =  0.5  is 
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optimal for multivariate normal case, regardless of dimension and covariance 

structure (Wakefield, Gelfand & Smith, 1991). 

Algorithm 6: RSSMVNR* for 𝑑 = 2 

Input: Constraints 𝑎(𝑟), 𝑏1
−(𝑟), 𝑏1

+(𝑟), 𝑏2
−(𝑟), 𝑏2

+(𝑟). 

Output: Sample from the BVN. 

Begin 

       For 𝑖 = 1, 2,⋯⋯ , 𝑛 do 

             1. Generate 𝑈1, 𝑈2, 𝑈3~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

             2. Calculate 𝑈 = 𝑎(𝑟) × 𝑈1 , 𝑉1 =  𝑏1
−(𝑟) + ( 𝑏1

+(𝑟) −  𝑏1
−(𝑟)) ×

𝑈2 and                    𝑉2 =  𝑏2
−(𝑟) + ( 𝑏2

+(𝑟) −  𝑏2
−(𝑟)) × 𝑈3.  

             3.  𝑰𝒇 𝑈 ≤ [𝑓1 (
𝑉1

𝑈𝑟 ,
𝑉2

𝑈𝑟)]

1

2𝑟+1
    then 

                      • 𝑿 = (
𝑉1

𝑈𝑟 ,
𝑉2

𝑈𝑟) 

                 Else 

                      • Go back to step 1 

                 End If 

         End For loop 

End Begin  

 

3.2. TVN Generation via RSSMVN  

This section discusses how RSSMVN generates sample from multivariate normal 

density when  𝑑 = 3. The   density function of TVN distribution is 𝑓(𝑿|𝝁, 𝚺)= 
1

(2𝜋)3 2⁄ |𝚺|
1
2

 exp {−
1

2
(𝑿 − 𝝁)𝑇𝚺−1(𝑿 − 𝝁)}, where −∞ < 𝜇, 𝑋 < ∞  and the mean 

vector and covariance matrix are 𝝁 = (

𝜇1

𝜇2

𝜇3

)  and 𝚺 = (

𝜎11 𝜎12 𝜎13

𝜎12 𝜎22 𝜎23

𝜎13 𝜎23 𝜎33

) 

respectively. 
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3.2.1. RSSMVNG Method 

To generate sample from TVN density via RSSMVNG, it derives the conditional 

distributions of (𝑋1|𝑋2 = 𝑥2, 𝑋3 = 𝑥3) , (𝑋2|𝑋1 = 𝑥1,𝑋3 = 𝑥3)  and ( 𝑋3|𝑋1 =

𝑥1,𝑋2 = 𝑥2). All required calculations to derive the conditional distributions of 

(𝑋1|𝑋2 = 𝑥2, 𝑋3 = 𝑥3) , (𝑋2|𝑋1 = 𝑥1,𝑋3 = 𝑥3)  and ( 𝑋3|𝑋1 = 𝑥1,𝑋2 = 𝑥2)  are  

shown in detail. Deriving full conditional distributions require the simplification 

of exponent part of TVN density which involves 𝐷 = 𝜎11(𝜎22𝜎33 − 𝜎23
2) −

𝜎12(𝜎12𝜎33 − 𝜎13𝜎23) + 𝜎13(𝜎12𝜎23 − 𝜎13𝜎22) and  

Σ−1 =
1

𝐷
(

𝑝11 𝑝12 𝑝13

𝑝12 𝑝22 𝑝23

𝑝13 𝑝23 𝑝33

) (say), where 𝑝11 = 𝜎22𝜎33 − 𝜎23
2 , 𝑝12 = 𝜎13𝜎23 −

𝜎12𝜎33, 𝑝13 = 𝜎12𝜎23 − 𝜎13𝜎22, 𝑝22 = 𝜎11𝜎33 − 𝜎13
2, 𝑝23 = 𝜎12𝜎13 − 𝜎11𝜎23 and 

𝑝33 = 𝜎11𝜎22 − 𝜎12
2. 

After simplifying the exponent part, the density function 𝑓(𝑿|𝝁, 𝚺) becomes 

1

(2𝜋)3 2⁄ |𝚺|
1
2

 exp {−0.5𝐷−1[𝑝11𝑎1
2 + 𝑝22𝑎2

2 + 𝑝33𝑎3
2 + 2𝑝12𝑎1𝑎2 + 2𝑝13𝑎1𝑎3 +

2𝑝23𝑎2𝑎3]}.  

Here, 𝑎1 = 𝑋1 − 𝜇1, 𝑎2 = 𝑋2 − 𝜇2 and 𝑎3 = 𝑋3 − 𝜇3. Considering 𝑋2 = 𝑥2 and 

𝑋3 = 𝑥3 in 𝑓(𝑿|𝝁, 𝚺) yields the full conditional distribution of 𝑋1,  

𝑓(𝑋1|𝑋2 = 𝑥2, 𝑋3 = 𝑥3) = 𝐶 exp {−
1

2𝐷
[𝑝11𝑎1

2 + 2𝑝12𝑎1𝑎2 + 2𝑝13𝑎1𝑎3]}

= 𝐶𝑒𝑥𝑝 {−
𝑝11

2𝐷
[𝑎1

2 − 2𝑎1 (
−𝑝12

𝑝11
𝑎2 +

−𝑝13

𝑝11
𝑎3)]}

= 𝐶𝐾 exp {−
𝑝11

2𝐷
[𝑎1 − (

−𝑝12

𝑝11
𝑎2 +

−𝑝13

𝑝11
𝑎3)]

2

}

= 𝐶𝐾 exp{−
𝑝11

2𝐷
[𝑋1 − 𝜇1

− (
−𝑝12

𝑝11

(𝑥2 − 𝜇2) +
−𝑝13

𝑝11

(𝑥3 − 𝜇3))]

2

} 

where, 𝐾  is a constant involving 𝑥2  and 𝑥3 . After simplification, the full 

conditional distribution of (𝑋1|𝑋2 = 𝑥2, 𝑋3 = 𝑥3) can be written as  
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𝑋1|𝑋2 = 𝑥2, 𝑋3 = 𝑥3~𝑁 (𝜇1 −
𝑝12(𝑥2−𝜇2)

𝑝11
−

𝑝13(𝑥3−𝜇3)

𝑝11
,

𝐷

𝑝11
). 

Similarly, considering 𝑋1 = 𝑥1 , 𝑋3 = 𝑥3  and 𝑋1 = 𝑥1 , 𝑋2 = 𝑥2  yield the 

following full conditional distributions of (𝑋2|𝑋1 = 𝑥1,𝑋3 = 𝑥3)  and (𝑋3|𝑋1 =

𝑥1,𝑋2 = 𝑥2) respectively, 

 𝑋2|𝑋1 = 𝑥1, 𝑋3 = 𝑥3~𝑁 (𝜇2 −
𝑝12(𝑥1−𝜇1)

𝑝22
−

𝑝23(𝑥3−𝜇3)

𝑝22
,

𝐷

𝑝22
), 

𝑋3|𝑋1 = 𝑥1,𝑋2 = 𝑥2~𝑁 (𝜇3 −
𝑝13(𝑥1−𝜇1)

𝑝33
−

𝑝23(𝑥2−𝜇2)

𝑝33
,

𝐷

𝑝33
). 

All the steps discussed above is summarized in Algorithm 7 which needs to be run 

𝑛 times to get a sample of size 𝑛. 

Algorithm 7: RSSMVNG for 𝑑 = 3 

Input: Initial values of  𝑋1, 𝑋2 and 𝑋3. 

Output: Sample from the TVN. 

Begin 

   Set 𝑥(0) = (𝑥1
(0)

, 𝑥2
(0)

, 𝑥3
(0)

). 

         For 𝑖 = 1, 2,⋯⋯ , 𝑛 do 

1. 𝑋1
(𝑖)

 ~ 𝑁 (𝜇1 −
𝑝12(𝑥2

(𝑖−1)−𝜇2)

𝑝11
−

𝑝13(𝑥3
(𝑖−1)−𝜇3)

𝑝11
,

𝐷

𝑝11
), 

2. 𝑋2
(𝑖)

 ~ 𝑁 (𝜇2 −
𝑝12(𝑥1

(𝑖)−𝜇1)

𝑝22
−

𝑝23(𝑥3
(𝑖−1)−𝜇3)

𝑝22
,

𝐷

𝑝22
), 

3. 𝑋3
(𝑖)

~𝑁 (𝜇3 −
𝑝13(𝑥1

(𝑖)−𝜇1)

𝑝33
−

𝑝23(𝑥2
(𝑖)−𝜇2)

𝑝33
,

𝐷

𝑝33
). 

         End For loop 

 End Begin  

 

3.2.2. RSSMVNR Method 

This section shows how the RSSMVNR generates sample from TVN density. The 

TVN probability density defined in Section 3.2. can be written as 𝑓(𝑿|𝝁, 𝚺) =
𝑓1(𝑿)

𝐶
∝ 𝑓1(𝑿), where 𝐶 = (2𝜋)|𝚺|

3

2  and 𝑓1(𝑿) = exp {−0.5𝐷−1[𝑝11𝑎1
2 + 𝑝22𝑎2

2 +

𝑝33𝑎3
2 + 2𝑝12𝑎1𝑎2 + 2𝑝13𝑎1𝑎3 + 2𝑝23𝑎2𝑎3]}.  
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Here, 𝑎1 = 𝑋1 − 𝜇1, 𝑎2 = 𝑋2 − 𝜇2 , 𝑎3 = 𝑋3 − 𝜇3 , 𝑝11 = 𝜎22𝜎33 − 𝜎23
2 , 𝑝12 =

𝜎13𝜎23 − 𝜎12𝜎33 , 𝑝13 = 𝜎12𝜎23 − 𝜎13𝜎22 , 𝑝22 = 𝜎11𝜎33 − 𝜎13
2 , 𝑝23 = 𝜎12𝜎13 −

𝜎11𝜎23 , 𝑝33 = 𝜎11𝜎22 − 𝜎12
2  and 𝐷 = 𝜎11(𝜎22𝜎33 − 𝜎23

2) − 𝜎12(𝜎12𝜎33 −

𝜎13𝜎23) + 𝜎13(𝜎12𝜎23 − 𝜎13𝜎22). 
 

Algorithm 8: RSSMVNR for 𝑑 = 3 

Input: Constraints 𝑎, 𝑏1
−, 𝑏1

+, 𝑏2
−, 𝑏2

+, 𝑏3
−, 𝑏3

+. 

Output: Sample from the TVN. 

Begin 

       For 𝑖 = 1, 2,⋯⋯ , 𝑛 do 

1. Generate 𝑈1, 𝑈2, 𝑈3, 𝑈4~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

2. Calculate 𝑈 = 𝑎 × 𝑈1 , 𝑉1 =  𝑏1
− + ( 𝑏1

+ −  𝑏1
−) × 𝑈2 , 

𝑉2 =  𝑏2
− + ( 𝑏2

+ −  𝑏2
−) × 𝑈3  and 𝑉3 =  𝑏3

− + ( 𝑏3
+ −  𝑏3

−) ×

𝑈4 

3.  If 𝑈 ≤ [𝑓1 (
𝑉1

𝑈
,
𝑉2

𝑈
,
𝑉3

𝑈
)]

1

4
 then 

                                • 𝑿 = (
𝑉1

𝑈
,
𝑉2

𝑈
,
𝑉3

𝑈
) 

                            Else  

                                • Go back to step 1 

                           End If 

         End For loop 

  End Begin  
 

The following quantities need to be calculated to simulate sample from TVN via 

RSSMVNR: 

(i) 𝑎 = 𝑠𝑢𝑝𝜒[𝑓1(𝑿)]
1

4, 

(ii) 𝑏1
− = 𝑖𝑛𝑓𝜒1

−𝑋1[𝑓1(𝑿)]
1

4 

(iii) 𝑏1
+ = 𝑠𝑢𝑝𝜒1

+𝑋1[𝑓1(𝑿)]
1

4, 

(iv) 𝑏2
− = 𝑖𝑛𝑓𝜒2

−𝑋2[𝑓1(𝑿)]
1

4 , 

(v) 𝑏2
+ = 𝑠𝑢𝑝𝜒2

+𝑋2[𝑓1(𝑿)]
1

4, 

(vi) 𝑏3
− = 𝑖𝑛𝑓𝜒3

−𝑋3[𝑓1(𝑿)]
1

4 and 
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(vii) 𝑏3
+ = 𝑠𝑢𝑝𝜒3

+𝑋3[𝑓1(𝑿)]
1

4, 

where 𝜒𝑖
− = {𝑋 ∈ 𝜒: 𝑋𝑖 ≤ 0} ,  𝜒𝑖

+ = {𝑋 ∈ 𝜒: 𝑋𝑖 ≥ 0} ,  𝑖 = 1, 2, 3 . The detail 

procedure of RSSMVNR for simulating from TVN is summarised in algorithm 8. 

Finally, we calculate the probability of acceptance(𝑃𝑎) by plugging in the values 

of 𝑎, 𝑏1
−, 𝑏1

+, 𝑏2
−, 𝑏2

+, 𝑏3
−, 𝑏3

+ in 𝑃𝑎 =
𝐶

4𝑎∏ (𝑏𝑖
−−𝑏𝑖

+)3
𝑖=1

. 

3.2.3. RSSMVNR* Method 

This section shows how the RSSMVNR* generates sample from TVN density. 

The TVN probability density defined in Section 3.2. can be written as 

𝑓(𝑿|𝝁, 𝚺) =
𝑓1(𝑿)

𝐶
∝ 𝑓1(𝑿) , where 𝐶 = (2𝜋)|𝚺|

3

2  and 

𝑓1(𝑿) = 𝑒𝑥𝑝 {−0.5𝐷−1[𝑝11𝑎1
2 + 𝑝22𝑎2

2 + 𝑝33𝑎3
2 + 2𝑝12𝑎1𝑎2 + 2𝑝13𝑎1𝑎3 +

2𝑝23𝑎2𝑎3]}.  

Here, 𝑎1 = 𝑋1 − 𝜇1, 𝑎2 = 𝑋2 − 𝜇2 , 𝑎3 = 𝑋3 − 𝜇3 , 𝑝11 = 𝜎22𝜎33 − 𝜎23
2 , 

𝑝12 = 𝜎13𝜎23 − 𝜎12𝜎33 , 𝑝13 = 𝜎12𝜎23 − 𝜎13𝜎22 , 𝑝22 = 𝜎11𝜎33 − 𝜎13
2 , 

𝑝23 = 𝜎12𝜎13 − 𝜎11𝜎23 , 𝑝33 = 𝜎11𝜎22 − 𝜎12
2  and 𝐷 = 𝜎11(𝜎22𝜎33 − 𝜎23

2) −

𝜎12(𝜎12𝜎33 − 𝜎13𝜎23) + 𝜎13(𝜎12𝜎23 − 𝜎13𝜎22). 

The following quantities need to be calculated to simulate sample from TVN via 

RSSMVNR*: 

(i) 𝑎(𝑟) = 𝑠𝑢𝑝𝜒[𝑓1(𝑿)]
1

3𝑟+1, 

(ii) 𝑏1
−(𝑟) = 𝑖𝑛𝑓𝜒1

−𝑋1[𝑓1(𝑿)]
𝑟

3𝑟+1, 

(iii) 𝑏1
+(𝑟) = 𝑠𝑢𝑝𝜒1

+𝑋1[𝑓1(𝑿)]
𝑟

3𝑟+1, 

(iv) 𝑏2
−(𝑟) = 𝑖𝑛𝑓𝜒2

−𝑋2[𝑓1(𝑿)]
𝑟

3𝑟+1,  

(v) 𝑏2
+(𝑟) = 𝑠𝑢𝑝𝜒2

+𝑋2[𝑓1(𝑿)]
𝑟

3𝑟+1, 

(vi) 𝑏3
−(𝑟) = 𝑖𝑛𝑓𝜒3

−𝑋3[𝑓1(𝑿)]
𝑟

3𝑟+1 and 

(vii) 𝑏3
+(𝑟) = 𝑠𝑢𝑝𝜒3

+𝑋3[𝑓1(𝑿)]
𝑟

3𝑟+1, 

where 𝜒𝑖
− = {𝑿 ∈ 𝜒: 𝑋𝑖 ≤ 0} ,  𝜒𝑖

+ = {𝑿 ∈ 𝜒: 𝑋𝑖 ≥ 0} ,  𝑖 = 1, 2, 3 . Analytically 

determining the values of 𝑎(𝑟), 𝑏1
−(𝑟), 𝑏1

+(𝑟), 𝑏2
−(𝑟), 𝑏2

+(𝑟), 𝑏3
−(𝑟), 𝑏3

+(𝑟)  is 

difficult. Therefore, we have used ‘genoud’ function in R under ‘rgenoud’ 
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package to calculate these values. The detail procedure of RSSMVNR* to 

simulate sample from TVN is summarised in algorithm 9. 

Algorithm 9: RSSMVNR* for 𝑑 = 3 

Input: Constraints 𝑎(𝑟), 𝑏1
−(𝑟), 𝑏1

+(𝑟), 𝑏2
−(𝑟), 𝑏2

+(𝑟), 𝑏3
−(𝑟), 𝑏3

+(𝑟). 

Output: Sample from the TVN. 

Begin 

       For 𝑖 = 1, 2,⋯⋯ , 𝑛 do 

1. Generate 𝑈1, 𝑈2, 𝑈3, 𝑈4~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

2. Calculate 𝑈 = 𝑎(𝑟) × 𝑈1 , 𝑉1 =  𝑏1
−(𝑟) + ( 𝑏1

+(𝑟) −  𝑏1
−(𝑟)) ×

𝑈2 , 𝑉2 =  𝑏2
−(𝑟) + ( 𝑏2

+(𝑟) −  𝑏2
−(𝑟)) × 𝑈3  and 𝑉3 =  𝑏3

−(𝑟) +

( 𝑏3
+(𝑟) −  𝑏3

−(𝑟)) × 𝑈4 

3. If 𝑈 ≤ [𝑓1 (
𝑉1

𝑈𝑟 ,
𝑉2

𝑈𝑟 ,
𝑉3

𝑈𝑟 )]

1

3𝑟+1
 then 

                         • 𝑿 = (
𝑉1

𝑈𝑟 ,
𝑉2

𝑈𝑟 ,
𝑉3

𝑈𝑟) 

                     Else  

                         • Go back to step 1 

                     End If 

          End For loop 

  End Begin  

Finally, we calculate the probability of acceptance(𝑃𝑎) by plugging in the values 

of 𝑎(𝑟), 𝑏1
−(𝑟), 𝑏1

+(𝑟), 𝑏2
−(𝑟), 𝑏2

+(𝑟), 𝑏3
−(𝑟), 𝑏3

+(𝑟) in 

                                      𝑃𝑎 =
𝐶

(3𝑟+1)𝑎(𝑟)∏ (𝑏𝑖
−(𝑟)− 𝑏𝑖

+(𝑟))3
𝑖=1

. 

The value of 𝑟  that maximizes the expression of 𝑃𝑎  is the optimal value of 𝑟 . 

Mathematical analysis reveals that 𝑟 =  0.5  is optimal for multivariate normal 

case, regardless of dimension and covariance structure (Wakefield, Gelfand & 

Smith, 1991). 

4. Simulation Setting 

To see the performance of proposed RSSMVN, we conducted an extensive 

simulation study, and result of our simulation study are presented in this section. 

More specifically, simulation is conducted to check the normality and randomness 
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properties of generated sample along with performance comparison between 

existing method and RSSMVN. Furthermore, acceptance rate of RSSMVNR and 

RSSMVNR* are also calculated to determine their efficiency. Here all the 

numerical computations are computed in R on a MacBook Air with an Intel (R) 

Core (TM) i7 processor running at 1.80 GHz. 

The proposed RSSMVN should be able to simulate for all valid 𝝁 and 𝚺 values. 

We choose mean vector, 𝝁, arbitrarily (without help of any statistical packages) as 

choosing 𝝁  is straight forward. However, choosing 𝚺  arbitrarily is not straight 

forward like choosing mean vector as it needs to be a positive definite and 

invertible matrix. Therefore, we used a R function ‘genPositiveDefMat’ in R 

under ‘clusterGeneration’ package to generate a positive definite matrix (Joe, 

2006). 

In our simulation study, we have considered different combinations of 𝝁 and 𝚺 

values, but we presented here only the following combinations. 

 BVN case (𝑑 = 2) 

1. 𝝁1 = (0 0)𝑇 and 𝝁𝟐 = (6 5)𝑇. 

2. 𝚺1 = (
8.31 0.38
0.38 7.70

) and 𝚺2 = (
4.74 0.30
0.30 3.73

). 

 TVN case (𝑑 = 3) 

1. 𝝁1 = (0 0 0)𝑇 and 𝝁2 = (6 5 8)𝑇. 

2. 𝚺1 = (
5.65 −3.03 −1.19

−3.03 7.21 −1.93
−1.19 −1.93 4.98

) and 

                                  𝚺2 = (
9.26 −0.57 −0.03

−0.57 6.361 −0.61
−0.03 −0.61 8.82

).  

Here, we have considered 4 combinations of 𝝁 and 𝚺 for each dimension. 

 

5. Results and Discussion 

In this section, the results of simulation study of our proposed method, RSSMVN, 

are presented along with discussions. All the results presented here are produced 

using a random seed number and we have found that using different seed numbers 

produce similar kind of results. In RSSMVNR and RSSMVNR*, all optimization 

is done by using ‘genoud’ function in R under ‘rgenoud’ package as optimization 
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of d-dimensional (d ≥ 2) density is difficult. Furthermore, in RSSMVNR* method, 

we are to determine the optimal value of 𝑟 as acceptance rate entirely depends on 

the value of 𝑟 . Mathematical analysis reveals that 𝑟 = 0.5  is optimal for 

multivariate normal case, regardless of dimension and covariance structure 

(Wakefield, Gelfand, & Smith, 1991). Therefore, in this paper, while generating 

multivariate normal variates we have used 𝑟 = 0.5 in RSSMVNR* method. 

5.1. Bivariate Normal Generation   

To test the normality of the generated observations Mardia’s test for multivariate 

normality is used. Table 1 shows the results of Mardia’s test for generated samples 

for different combinations of µ and Σ. From Table 1, it is observed that the P -

Values of Mardia’s both test statistics are greater than 𝛼 = 0.05 for all the three 

methods under RSSMVN, which support the null hypothesis of normality of 

generated BVN samples. 

To test the randomness of generated samples obtained under all methods, we used 

the graphical technique (ACF plot) and statistical test (Ljung- Box test). Usually, 

sample observations generated through any method whose building block is Gibbs 

sampling are correlated as it uses full conditional distributions iteratively. This is 

also obvious in RSSMVNG as well. The simulated observations obtained under 

RSSMVNG method are correlated with each other which is shown in the first two 

plots of Fig 1. From Figure 1, it is observed that some of the peaks at lag around 

1, 30, 39, 60, 70, 79 and 98 for 𝑋1 and at lag around 1, 3, 9, 12, 70 and 100 for 𝑋2 

are beyond the significance confidence bands (95%). 

A possible remedy of successive correlation in the sample is that the sample are 

thinned so that resulting sample is close to independent. For our simulation study, 

we have retained every 100
th

 observation from each sample of 50000 observations 

and thinned samples have been named as modified samples. ACF plots for thinned 

sample are shown in the second row of Figure 1. Ljung-Box test is used to test the 

randomness of 𝑋1 but result of this test is not presented here. From the Ljung-Box 

test, we have found that for thinned sample lag 1 is insignificant. Similarly, 

randomness of 𝑋2 is checked through Ljung-Box test, and we have found the same 

conclusion like 𝑋1 . Finally, sample generated via RSSMVNG needs to be 

carefully used (thinned) before drawing any inference regarding unknown 

parameter.        
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                        Table 1: Mardia’s test results (n = 500, d = 2) 

Method Σ 𝝁 Measure 𝑃 -

value 

 

 

 

RSSMVNG 

𝚺1 𝝁1 Skewness 0.412 

Kurtosis 0.366 

𝝁2 Skewness 0.549 

Kurtosis 0.723 

𝚺2 𝝁1 Skewness 0.552 

Kurtosis 0.096 

𝝁2 Skewness 0.621 

Kurtosis 0.482 

 

 

 

RSSMVNR 

𝚺1 𝝁1 Skewness 0.785 

Kurtosis 0.644 

𝝁2 Skewness 0.641 

Kurtosis 0.122 

𝚺2 𝝁1 Skewness 0.641 

Kurtosis 0.448 

𝝁2 Skewness 0.608 

Kurtosis 0.546 

 

 

 

RSSMVNR* 

𝚺1 𝝁1 Skewness 0.641 

Kurtosis 0.725 

𝝁2 Skewness 0.343 

Kurtosis 0.390 

𝚺2 𝝁1 Skewness 0.420 

Kurtosis 0.729 

𝝁2 Skewness 0.188 

Kurtosis 0.968 
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Figure 1: ACF plot of observations (d = 2) generated via RSSMVNG 

As uniform random numbers are used (play the role like the proposal density in 

accept reject algorithm) to generate sample from MVN in both RSSMVNR and 

RSSMVNR*, the samples are expected to be independent. Figure 2 presents the 

ACF plots of observations simulated via RSSMVNR and RSSMVNR* methods. 

It is observed that some of the peaks at lag around 4, 19, 62, 67 and 91 of 𝑋1, and 

30, 43, 74 and 82 of 𝑋2  for RSSMVNR method and 23, 79, 86 and 98 of 𝑋1 and 

17, 54, 73 and 99 of 𝑋2  for RSSMVNR* method are beyond the significance 

confidence bands (95%). However, it does not guarantee the presence of 

autocorrelation, and may happen because of sampling error. Ljung-Box test is 

carried out to confirm this, and we have found insignificant lag at 1. 
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                    Figure 2: ACF plot of observations (d = 2) generated via  

RSSMVNR and RSSMVNR* 

Table 2 presents the simulated acceptance rate against the theoretical acceptance 

rate for each combination. From Table 2, it is observed that when mode is shifted 

from zero vector then acceptance rate decreases from 47% to 28%. From Table 2,  
           

Table 2: Theoretical and simulated acceptance rates of RSSMVNR for 

                                          different µ  and Σ values. 

Covariance        Mean 𝑷𝒂𝒄𝒄𝒆𝒑 �̂�𝒂𝒄𝒄𝒆𝒑 

𝚺1 𝝁1     0.473      0.476 

𝝁2     0.281      0.268 

𝚺2 𝝁1     0.473      0.477 

𝝁2     0.200      0.193 
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it is also observed that simulated acceptance rate, calculated based on a sample of 

size 5000, is very close to theoretical acceptance rate. Therefore, before 

generating 𝑿~𝑁𝑑(𝝁, 𝚺)  the density is relocated to 𝑿~𝑁𝑑(𝟎, 𝚺)  first to achieve 

maximum acceptance rate. The acceptance rate for RSSMVNR* is shown against 

its counterpart RSSMVNR in Table 3. We have presented only first combination 

where zero mean vector is considered. For other combinations where mode is 

away  

Table 3: Theoretical and simulated acceptance rates for 

RSSMVNR and RSSMVNR* 

         Method 𝑷𝒂𝒄𝒄𝒆𝒑 �̂�𝒂𝒄𝒄𝒆𝒑 

     RSSMVNR        0.473      0.476 

     RSSMVNR*        0.533      0.535 

from zero acceptance rate decreases in both cases. However, RSSMVNR* has a 

higher acceptance rate than RSSMVNR irrespective of 𝝁 and 𝚺 values. Here, we 

can also rescale BVN density to the density where mode is zero to get maximum 

acceptance rate.  

Table 4: Average bias of 𝜇 and Σ calculated based on 50 data sets (d = 2) 

 

 * 
F

BA denotes the distance between two matrices A and B where 

)( XXtrX T

F
 is the Frobenius norm. 

Parameter    Method                  Sample Size (𝒏) 

100 250 500 1000 10000 

𝜇 Existing 0.378 0.222 0.178 0.107 0.035 

RSSMVNG 0.121 0.096 0.079 0.036 0.011 

RSSMVNR* 0.321 0.244 0.162 0.124 0.033 

Σ Existing 4.324 1.735 0.953 0.309 0.036 

RSSMVNG 5.035 1.337 0.148 0.024 0.084 

RSSMVNR* 4.907 1.565 0.882 0.345 0.039 
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Table 4 presents the average bias of mean and covariance which are calculated 

based on 50 BVN samples simulated from 𝑁2(𝝁𝟐, 𝚺𝟏)  through existing 

(decomposition based) and proposed methods respectively. These results are 

reproducible as specific seed number is used to simulate each of the 50 date sets 

under both methods. We have used different size of samples to compare the 

performance of these methods. In RSSMVNG method, bias of 𝝁  and 𝚺  are 

calculated based on the thinned samples. The Frobenius norm is used to calculate 

the bias of covariance matrix while simple Euclidean distance is used to calculate 

the bias of mean vector (Habeck, 2009). From Table 4, it is evident that the 

average bias of both mean and covariance across all the methods are generally 

close to each other. Furthermore, as sample size increases the values of average 

bias of mean and covariance decrease for all the methods. 

Table 5: Average computing time in seconds calculated based on 

50 data sets (d =2) 

 

The average computing time required to simulate sample from 𝑁2(𝝁𝟐, 𝚺𝟏) under 

existing and proposed methods for different 𝑛 values are presented in Table 5. 

From Table 5, it is clear that our proposed method requires higher computing time 

compared to the existing method irrespective of all sample sizes, and this is 

because of thinning and numerical solutions required in RSSMVNG and 

RSSMVNR* respectively. 

5.2. Trivariate Normal Generation   

To test the normality of the generated observations Mardia’s test for multivariate 

normality is used. Table 6 shows the results of Mardia’s test for generated samples 

for different combinations of µ and Σ. From Table 6, it is observed that the P -

Values of Mardia’s both test statistics are greater than 𝛼 = 0.05 for all the three 

methods under RSSMVN, which support the null hypothesis of normality of 

generated TVN samples. 

To test the randomness of generated samples obtained under all methods, we used 

the graphical technique (ACF plot) and statistical test (Ljung- Box test). Usually, 

sample observations generated through any method whose building block is Gibbs 

sampling are correlated as it uses full conditional distributions iteratively. This is 

     Method                        Sample size 

100 250 500 1000 10000 

     Existing 0.0001 0.0004 0.0005 0.006 0.0020 

   RSSMVNG 0.1732 0.4573 0.9141 1.8146 19.3400 

   RSSMVNR* 1.4739 1.2320 0.1240 1.2538 1.7694 
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also obvious in RSSMVNG as well. The simulated observations obtained under 

RSSMVNG method are correlated with each other which is shown in the first 

three plots of Figure 3. A possible remedy of successive correlation in the sample 

is that the sample are thinned so that resulting sample is close to independent. For 

our simulation study, we have retained only every 100
th

 observation from each 

sample of 50000 observations and thinned samples have been named as modified 

samples. ACF plots for thinned sample are shown in the second row of Fig 3. 

Ljung-Box test is used to test the randomness of 𝑋1 but result of this test is not 

presented here. From the Ljung-Box test, we have found that for thinned sample 

lag 1 is insignificant. Similarly, randomness of 𝑋2 and 𝑋3  are checked through 

Ljung-Box test, and we have found the same conclusion like 𝑋1. Finally, sample 

generated via RSSMVNG needs to be carefully used (thinned) before drawing any 

inference regarding unknown parameter. As uniform random numbers are used 

(play the role like the proposal density in accept reject algorithm) to generate 

sample from MVN in both RSSMVNR and RSSMVNR*, the samples are 

expected to be independent.  
                           

Table 6: Mardia’s test results (n = 500, d = 3) 

    Method 𝚺 𝝁 Measure 𝑷-value 

 
 
 
   RSSMVNG 

𝚺1 𝝁1 Skewness 0.245 
Kurtosis 0.161 

𝝁2 Skewness 0.897 
Kurtosis 0.645 

𝚺2 𝝁1 Skewness 0.352 
Kurtosis 0.866 

𝝁2 Skewness 0.185 
Kurtosis 0.744 

 
 
 
   RSSMVNR 

𝚺1 𝝁1 Skewness 0.436 
Kurtosis 0.521 

𝝁2 Skewness 0.192 
Kurtosis 0.378 

𝚺2 𝝁1 Skewness 0.780 
Kurtosis 0.637 

𝝁2 Skewness 0.122 
Kurtosis 0.274 

 
 
 
   RSSMVNR* 

𝚺1 𝝁1 Skewness 0.233 
Kurtosis 0.296 

𝝁2 Skewness 0.183 
Kurtosis 0.818 

𝚺2 𝝁1 Skewness 0.999 
Kurtosis 0.700 

𝝁2 Skewness 0.163 
Kurtosis 0.793 
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           Figure 3: ACF plot of observations (d = 3) generated via RSSMVNG 
 

Table 7 presents the simulated acceptance rate against the theoretical acceptance 

rate for each combination. From Table 7, it is observed that when mode is shifted 

from zero vector then acceptance rate decreases from 22% to 8%. From Table 7, it 

is also observed that simulated acceptance rate, calculated based on a sample of 
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size 5000, is very close to theoretical acceptance rate. Therefore, before 

generating 𝑿~𝑁𝑑(𝝁, 𝚺)  the density is relocated to 𝑿~𝑁𝑑(𝟎, 𝚺)  first to achieve 

maximum acceptance rate.  

The acceptance rate for RSSMVNR* is shown against its counterpart RSSMVNR 

in Table 8. In this Table, we have shown only two combinations where mean 

vector is zero vector. For other combinations in which mode is away from zero 

acceptance rate decreases in both cases. However, RSSMVNR* has a higher 

acceptance rate than RSSMVNR irrespective of 𝝁 and 𝚺 values. Here, we can also 

rescale TVN density to the density where mode is zero to get maximum 

acceptance rate. 
 

Table 7: Theoretical and simulated acceptance rates of RSSMVNR for 

different µ and Σ values. 
 

Covariance     Mean 𝑷𝒂𝒄𝒄𝒆𝒑 �̂�𝒂𝒄𝒄𝒆𝒑 

𝚺1 𝝁1 0.229 0.227 

𝝁2 0.081 0.080 

𝚺2 𝝁1 0.274 0.272 

𝝁2 0.127 0.125 

 

Table 8: Theoretical and simulated acceptance rates for 

RSSMVNR and RSSMVNR* 
 

Covariance  Method RSSMVNR RSSMVNR* 

𝚺1 𝑷𝒂𝒄𝒄𝒆𝒑     0.229     0.262 

�̂�𝒂𝒄𝒄𝒆𝒑     0.227     0.252 

𝚺2 𝑷𝒂𝒄𝒄𝒆𝒑     0.274     0.314 

�̂�𝒂𝒄𝒄𝒆𝒑     0.272     0.319 
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Table 9 presents the average bias of mean and covariance calculated based on 50 

samples simulated from 𝑁3(𝝁𝟐, 𝚺𝟏) through existing and proposed methods. Like 

the case  d = 2 shown in earlier, different size of samples are considered to 

compare the performance of these methods along with considered a specific seed 

number to generate each of the 50 data sets so that all the results are reproducible. 

From Table 9, it is evident that the average bias of both mean and covariance 

parameters under all methods are close to each other. Again, as sample size 

increases the values of average bias of mean and covariance decrease for all the 

methods.   

Table 9: Average bias of 𝜇 and Σ values calculated based on  

50 data sets (d = 3) 

Parameter  Method                  Sample Size (𝒏) 

100 250 500 1000 10000 

𝜇 Existing 0.404 0.229 0.174 0.111 0.038 

RSSMVNG 0.400 0.242 0.188 0.131 0.037 

RSSMVNR* 0.379 0.233 0.179 0.122 0.037 

Σ Existing 4.291 2.058 0.953 0.450 0.042 

RSSMVNG 4.431 1.914 0.979 0.460 0.049 

RSSMVNR* 5.145 1.870 0.983 0.434 0.041 

The average computing time required to simulate sample from 𝑁3(𝝁𝟐, 𝚺𝟏) under 

existing and proposed methods for different 𝑛 values are presented in Table 10. 

From Table 10, it is clear that proposed method requires higher computing time 

compared to the existing method irrespective of all sample sizes, and this is 

because of thinning and numerical solutions required in RSSMVNG and 

RSSMVNR* respectively. 

Table 10: Average computing time in seconds calculated based on  

50 data sets (d = 3) 

      Method                         Sample size 

100 250 500 1000 10000 

      Existing 0.0002 0.0005 0.0006 0.0009 0.0047 

    RSSMVNG 0.1640 0.4798 0.9259 1.8776 20.334 

    RSSMVNR* 3.3589 3.4595 3.5066 3.6092 4.8426 
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From the above results and discussion, it is clear that sample obtained through 

proposed method satisfies both the normality and the randomness properties. 

Furthermore, the performance of the proposed method is very similar to that of 

performance of the existing method in terms of bias of the parameters although 

the proposed method requires higher computing time compared to the existing 

method irrespective of all the sample sizes. However, one can use the proposed 

method as an alternative method to simulate sample from MVN as required 

computing time in proposed method is not too big to think about in a modern day. 

Although any statistical efficiency (consistently getting less bias) of the proposed 

method is not found over existing method in our simulation studies, the proposed 

method could be really handy in computational aspects (where existing method 

may get stuck, Ripley 1987). The proposed decomposition free method discussed 

in this paper can be used as an alternative method where existing method fails 

(due to numerical instability because of decomposition of a specific covariance 

matrix). Exploring such numerical issues of existing method could be really an 

interesting computational work for future researchers. 

 

6. Application 

Suppose we want to calculate Pr (𝑋1
2 + 2𝑋2

3 > 3)  where 𝑿 = (𝑋1, 𝑋2)  follows 

bivariate standard normal distribution with 𝑐𝑜𝑣(𝑋1, 𝑋2) = 0.25. Mathematically, 

𝐽 = ∬𝐼[𝑋1
2+2𝑋2

3>3]𝑓(𝑥1𝑥2)𝑑𝑥1𝑑𝑥2 , where −∞ < 𝑋1, 𝑋2 < ∞  and  𝐼[𝑋1
2+2𝑋2

3>3]  is 

an indicator function.  Analytical solution of 𝐽 is not straightforward. However, 

estimating the integral using Monte- Carlo approach is very easy. 

Monte- Carlo Approach: 

 Generate 𝑿 = (𝑋1, 𝑋2)~𝐵𝑉𝑁(𝝁, 𝚺). 

 𝐽 = 𝑛−1 ∑ (𝑥1𝑖
2 + 𝑥2𝑖

3 > 3)𝑛
𝑖=1 . 

Considering 𝑛 = 1000, using any of the methods of our proposed RSSMVN, we 

have 𝐽 = 0.207. 
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7. Conclusion and Future Works 

In this paper, we have proposed a new technique RSSMVN for generating sample 

from multivariate normal density. The building blocks of the proposed method are 

Gibbs, Ratio-of-Uniforms and Modified Ratio-of-Uniforms method. The validity 

and efficiency of the RSSMVN is investigated through an extensive simulation 

study. From the simulation study, it is observed that RSSMVN can be used as an 

alternative method to generate sample from MVN. From our simulation study it is 

observed that RSSMVN has a high efficiency (53% acceptance rate for d = 2 

while it is 31% for d = 3) when its building block is MRoU method. However, this 

paper does not cover the numerical issues arose due to decomposition of specific 

Σ in decomposition method. Finding those Σ, for which decomposition based 

approach gets stuck, and investigating the robustness of RSSMVN for them could 

be a very interesting computational research work in future. 
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