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Abstract 
 

The parametric regression models are employed extensively in both reliability and 

survival analyses for identifying factors or covariates associated with lifetimes of an 

object. There are situations where the information on some covariates associated with 

some lifetimes are not available. For example, in the case of warranty claims database, 

the information on covariates (e.g., failure modes, usage conditions, operating 

environments, etc.) are known for the objects that fail within the warranty period and are 

unknown for the censored objects. This article applies the Weibull and lognormal 

parametric regression models for modeling the lifetimes as a function of covariates. The 

expectation maximization (EM) algorithm is used to obtain the maximum likelihood 

estimates of the parameters of the model because of incomplete information on some 

covariates. An example based on real field data of an automobile component is given to 

estimate the distribution quantiles and reliability functions at different conditions of 

covariates for assessing the performance of the component with respect to those 

covariates. It also traces the best and worst conditions of covariates and recommends that 

efforts should be concentrated at determining and reducing the risks associated with the 

root causes of failures in the worst conditions of covariates for improving the reliability of 

the component. 

Keywords: Parametric regression model, Weibull regression model, Lognormal 

regression model, Warranty claims data, Reliability, Covariates, EM algorithm. 
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1. Introduction 

Reliability and survival analyses are the specialized fields of mathematical 

statistics and are developed to deal with special type of time-to-event random 

variables (lifetime, failure time, survival time, etc.). In the case of reliability 

analysis, our concern is to address the characteristics of survival times of products 

(item, equipment, component, subsystem, system, etc.), whereas in the case of 

survival analysis, we address the characteristics of lifetimes arising from problems 

associated with living organisms (plant, animal, individual, person, patient, etc.) 

(Karim & Islam, 2019). In this paper by an object we mean item, equipment, 

component, subsystem, system, etc. among products; and plant, animal, 

individual, person, patient, etc. among living organisms in an experiment/study. 

Reliability of a product conveys the concept of dependability and successful 

operation or performance. It is a desirable property of great interest to both 

manufacturers and consumers. The time-to-failure or lifetime of an object is 

intimately linked to its reliability and this is a characteristic that will vary from 

system to system even if they are identical in design and structure. For example, if 

we use the same automobile component in different automobiles and observe their 

individual failure times, we would not expect them all to have the same failure 

times. The times to failure for the components used in different automobiles 

would be different and be defined by a random variable. The behavior of the 

random variable can be modeled by a probability distribution which is a 

mathematical description of a random phenomenon consisting of a sample space 

and a way of assigning probabilities to events. The basis of reliability analysis is 

to model the lifetime by a suitable probability distribution and to characterize the 

life behavior through the selected distribution (Karim & Islam, 2019).  

A salient feature of modern industrial societies is that new products are appearing 

on the market at an ever increasing pace. This is due to (i) rapid advances in 

technology and (ii) increasing demands of customers, with each a driver of the 

other (Blischke, Karim, & Murthy, 2011). Customers need assurance that a 

product will perform satisfactorily over its designed useful life. This depends on 

the reliability of the product, which, in turn, depends on decisions made during the 

design, development and production of the product. One way that manufacturers 

can assure customers of satisfactory product performance is through reliability. 

Automotive manufacturing companies analyze field reliability data to enhance the 

quality and reliability of their products and to improve customer satisfaction. In 

recent years, many manufacturers have utilized the warranty database as a prime 

source of field reliability data, which can be collected economically and 

efficiently through repair service networks. Warranty claim data are superior to 
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laboratory test data in the sense that they contain information on the actual 

environment in which the product is used. Therefore, a number of procedures have 

been developed for collecting and analyzing warranty claim data, e.g., (Blischke, 

Karim, & Murthy, 2011) and the references given therein, (Yang, He, & He, 

2016), (Khoshkangini, Pashami, & Nowaczyk, 2019), (Khoshkangini, et al., 

2020).   

There are situations where the lifetime of an object depend on some explanatory 

variables or covariates, e.g., the lifetime of an automobile depends on the 

operating environment and the survival time of a patient depends on the treatment 

condition. If important explanatory variables are ignored in an analysis, it is 

possible that resulting estimates of quantities of interest (e.g., distribution 

quantiles or failure probabilities) could be biased seriously (Meeker & Escobar, 

1998). Regression analysis is useful for modeling the lifetime as a function of the 

covariates or predictors. The use of linear regression models assuming normality 

assumption is very limited in reliability and survival analyses due to the fact that: 

(i) the lifetime variables are non-negative and skewed and (ii) the relationship 

between lifetimes and explanatory variables are not directly linear (Karim & 

Islam, 2019). Due to the nature of the data in reliability and survival analyses, it is 

not a practical option to use a linear regression model, and the parametric 

regression models are employed extensively for identifying factors or covariates 

associated with the lifetime of an object. If we want to know the probability that 

an object will last longer than a certain lifetime with respect to particular 

circumstances or characteristics or covariates, the parametric regression models 

can be applied. However, there are situations where the information on some 

covariates associated with some lifetimes are not available. For example, in the 

case of warranty claims database, the information on covariates (e.g., failure 

modes, usage conditions, operating environments, etc.) are known for the objects 

that fail within the warranty period and are unknown for the censored objects. 

In this paper, an approach is discussed for modelling the reliability of a specific 

system (unit) of automotive components based on field failure warranty data. The 

unit’s lifetime depends on some explanatory variables or covariates such as the 

automobile operating environment or used region, types of automobile that use the 

unit, and the types of failure mode. If a unit fails within the warranty period, the 

information on covariates can be known from the warranty database; however, 

such information is unknown for the censored units. The principal aim of the 

paper is to fit the Weibull and lognormal regression models for the lifetime of the 

unit which depends upon a vector of categorical covariates and to assess the 

reliability of the unit as a function of those covariates. The expectation 

maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977) by the method of 
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weights proposed in (Ibrahim, 1990) is used to estimate the parameters of the 

models. 

The outline of the paper is as follows. Section 2 discusses the parametric 

regression model for modelling the lifetime variable as a function of covariates. 

Section 3 presents the parameter estimation procedure using the EM algorithm by 

the method of weights for incomplete covariates. An example based on real field 

data of automobile components is given in section 4. Section 5 concludes the 

paper with a discussion and possible implementation issues for future research. 

2. Parametric Regression Model 

Let the lifetime random variable denoted by T [and log( )Y T ] depends on a vector 

of explanatory variables or covariates, X = (X1, …,Xp). Regression analysis of 

lifetimes involves specifications for the distribution T, ( | , , )f t X   , for given X, 

upon which lifetime may depend. The general form of the parametric regression 

model is 

 ( )ij j ijY X     (1) 

where ijY is the i
th

 log lifetime [ log( )]ij ijY T  for a given explanatory variable jX , σ > 

0, and ij is a random variable that does not depend on jX ( 1,2, , ; 1,2, , )jj p i n  . 

Expression (1) can be rewritten in terms of matrices so that the model is given by  

 ( )Y   X   (2) 

where ( ) X is a location parameter and σ is a scale parameter. The distribution of T 

(where logY T ) depends on the assumed distribution of  , see, (Kalbfleisch & 

Prentice, 2002), (Nelson, 1990), and (Lawless, 2003). A variety of functional 

forms for ( ) X or ( ( ) exp( ( )) X X in (2) have been proposed, but the most useful 

form is perhaps the log-linearmodel (Lawless, 1982), for which  

 ( ) X X   (3) 

where 1 2( , , , )pX X XX  is the 1 p  vector of independent (or regressor) variables 

and 1 2( , , , )p     is a 1p vector of regression coefficients. This form is 

comparatively simple to apply and available in many statistical software packages. 

Let ( , , )       be a (p+r+1)×1 vector of all parameters in the model, where 

1( ,..., )p    represents a vector of regression coefficients, σ is a scale parameter, 
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and 1( ,..., )r    is the parameter vector associated with the distribution of 

covariates X, ( | )g X  . The complete-data log-likelihood function based on n 

independent observations can be written as 

, , |

1 1 1

( | , ) ( | , ) ( , | , ) ( | ),
n n n

X t X t i i t X i i X i

i i i

l X t l X t l X t l X    
  

       (4) 

where , ( | , )X t i il X t  is the complete-data log-likelihood of θ for the ith observation 

based on the joint distribution of (X, t); | ( , | , )t X i il X t  is the log-likelihood based 

on the conditional distribution of t|X; and ( | )X il X is the contribution from the 

marginal distribution of X. Many specifications are possible for ( | , , )f t X   and

( | )g X   depending on the problem and the nature of the available data. In this 

paper we consider the two parameters Weibull and lognormal distributions for

( | , , )f t X   and the multinomial distribution for ( | ).g X   

2.1. Log-Location-Scale Regression Model 

A random variable Y belongs to the location-scale family of distributions if its 

cumulative density function (cdf) can be expressed as 

 
( )

Pr( ) | ( ), , 0,
y X

Y y F y X y


 


 
     

 
   

where Φ(z) is the cdf of z and it does not depend on any unknown parameters. A 

random variable T belongs to the log-location-scale family distribution if 

log( )Y T is a member of the location-scale family. The log-location-scale 

distribution regression model can be expressed as 

 
log( ) ( )

Pr( ) | ( ), ( | , , ) , 0.
t X

T t F t X F t X t


   


 
      

 
  (5) 

with location parameter dependent on X, ( )X X  , and scale parameter σ does 

not depend on X. The Weibull, lognormal and loglogistic distributions are the 

special cases of this model. The quantile function of the model (5) 
1log ( ) ( ) ( ) ( )p pt X y X X p      

   (6) 

is linear in X. Such a relationship between ( )pt X  and X sometimes known as 

“loglinear relationship”. Choosing Φ determines the shape of the distribution for a 

particular value of X. As mentioned in (Meeker & Escobar, 1998), sev 

(smallest extreme value), nor  (normal) and logis   (logistic) are used for 

Weibull, lognormal and loglogistic distributions, respectively.  
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The likelihood function for a combination of n independent exact-failure and 

right-censored observations can be written as 
1

1

log( ) ( ) log( ) ( )1
( , ) 1

i in
i i i i

ii

t X t X
L

t

 
 

  
  





       
       

     
  (7) 

where ( )z is the probability density function (pdf) of z, ( )i iX X  , δi =1 for an 

exact-failure time and δi =0 for a right-censored observation.  

2.2. Weibull Regression Model 

It is convenient to use a simple alternative parameterization for the Weibull 

distribution based on the relationship between the Weibull distribution and the 

smallest extreme value (SEV) distribution. In (5), if we assume Φ as the cdf of the 

smallest extreme value distribution, i.e., sev  , we get the Weibull regression 

model with location parameter dependent on X, ( )X X  , and scale parameter 

σ. Under this model, the density function of T given X can be written as 

1 log( ) ( ) log( ) ( )
( | , , ) exp exp , 0.

t X t X
f t X t

t

 
 

  

     
      

    
 (8) 

The survivor function for this model  

log( ) ( )
( | , , ) exp exp , 0

t X
S t X t


 



   
    

  
.   (9) 

Conditional on covariates, for unit i, the log-likelihood function for β and σ, 

| ( , | , , )t X i i il X t   , can be obtained using (7), (8) and (9). For more detailed 

explanations of Weibull regression model, see (Meeker & Escobar, 1998), 

(Lawless, 2003), (Karim & Suzuki, 2007), (Blischke, Karim, & Murthy, 2011), 

and (Karim & Islam, 2019).  

2.3. Lognormal Regression Model 

In (5), if we assume Φ as the cdf of the normal distribution, i.e., nor  , we get 

the lognormal regression model with scale parameter ( ) exp( ( )) exp( )X   X X

dependent on X, and shape parameter σ. Under this model, the density function of 

T given X can be written as 

2

nor

1 log( ) ( ) 1 1 log( ) ( )
( | , , ) exp , 0,

22

t X t X
f t X t

t t

 
  

   

     
       

     

 (10) 

and the survivor function becomes 



 

 

 

 

 

 

 

Karim and Islam: Parametric Regression Models for Analyzing Lifetime...                231 

 

 

 

2

nor

log( ) ( ) 1 1 log( ) ( )
( | , , ) 1 exp , 0

22
t

t X t X
S t X dt t

t

 
 

  

      
        

     
 ,   (11) 

where nor and nor are the pdf and cdf of the standard normal distribution. 

Conditional on covariates, for unit i, the log-likelihood function for β and σ, 

| ( , | , , )t X i i il X t   , under this model can be obtained by using (10) and (11) in (7). 

More details on lognormal regression model can be found, for example, in 

(Meeker & Escobar, 1998), (Kalbfleisch & Prentice, 2002), (Lawless, 2003), and 

(Karim & Islam, 2019).  

2.4. Distribution of Covariates 

Suppose A denotes a set of all possible combinations of levels of covariate vectors 

for any individual, r denotes the number of elements in A, X
(k)

 denote the kth 

covariate vector in A and mk be the expected count in covariate class k, k =1, …, r. 

As mentioned in (Karim & Suzuki, 2007), the counts of individuals having each 

of the possible covariate assignments, mk, are distributed as multinomials (n, γ), 

where the vector γ = (γ1, …, γr)′ and γk denote the probability that an individual is 

of covariate type k, k = 1, …, r. Thus, the log-likelihood for γ, lX(γ|X), can be 

expressed as 

1 1

1 1 1

( ) ( | ) log( ) log( )
n r r

x X i k k k r

i k k

l l X m n m  
 

  

 
     

 
  γ X   (12) 

where
1

1

r
kk

n m



 is the expected number of individuals belonging to the last 

covariate class r and 
1

1
1

r
r kk
 




  .  

3. Parameter Estimation via the EM algorithm 

If all the values of response variable ti and the corresponding covariates Xi are 

observed for i=1, …,n, then the log-likelihood function for the Weibull regression 

model can be derived by using Eqs. (7), (8), (9) and (12). Similarly, the log-

likelihood function for the lognormal regression model can be derived by using 

Eqs. (7), (10), (11) and (12). These log-likelihood functions are then maximized 

separately to obtain the MLEs of θ for the Weibull and lognormal models. 

However, we deal with the problem in which for censoring time τi, if ti≤ τi, the 

values of ti, τi, and Xi are observed, whereas if ti>τi, the number of censored units 

and the value of τi are known but Xi are unknown. Section 4 describes in detail the 

nature of available data. Since it is a problem of incomplete categorical covariates 



 

 

 

 

 

 

 

232                                   International Journal of Statistical Sciences, Vol. 20(2), 2020 

 

(Lipsitz & Ibrahim, 1996a), we apply the EM algorithm (Dempster, Laird, & 

Rubin, 1977) to estimate the parameters of the models. The EM algorithm consists 

of two steps to iterate: the E-step determines the conditional expectation of 

complete-data log-likelihood given observed data and the M-step maximizes that 

conditional expected log-likelihood. The detailed explanation of the EM algorithm 

can be found in (Dempster, Laird, & Rubin, 1977) and (McLachlan & Krishnan, 

1997).  
 

Let Xi = (Xobs,i, Xmis, i), where Xobs,i and Xmis, i denote the observed and missing 

components of Xi, respectively. Following references (Ibrahim, 1990) and (Lipsitz 

& Ibrahim, 1996b), the E-step of the EM algorithm at the (s+1)st iteration can be 

written as 

       
mis, ( ) mis, ( )

( ) ( ) ( )
obs,

1

( ) ( )
|

1 1

( | ) ( | ( ; , , | , , ,

               = , | , , |

i j i j

n
s s s

i i i i i i i

i

n n
s s

ij t X i i i ij X i

i X i X

Q Q E l t X X t

w l X t w l X

 

  



 

  
 





   

θ θ θ θ θ θ

θ θ γ

 (13) 

wherej indexes all possible combinations of levels of missing covariates for i, and 

 

   
   

mis, ( )

( ) ( )
mis, obs,

( ) ( ) ( )
mis, obs, mis, obs,

( ) ( ) ( )
mis, obs, mis, obs,

Pr | , , ,

, | ( ), , , ( ), |
               =

, | ( ), , , ( ), |
i j

s s
ij i i i i

s s s
i i i i i i

s s s
i i i i i iX

w X X t

f t X j X g X j X

f t X j X g X j X



  

  

 
 



θ θ

γ

γ

 (14) 

represent the weights, which can be interpreted as the posterior probabilities of the 

missing values (Lipsitz & Ibrahim, 1996b). Assume that here ni new observations 

have been created for each of the possible missing covariates for observation i, 

given the response ti and the observed covariate Xobs,i. If 
1

n
ii

N n


 denotes the 

total number of new observations, then the double subscripted weights wij can be 

replaced with a single subscripted weights, say, vi, for i =1, …, N (Karim & 

Suzuki, 2007). 
 

In the M-step, the first term of the expression of ( )( | )sQ θ θ  given in Eq. (13) can be 

maximized by using any program/package (e.g. S-Plus, R-language) used in 

failure time regression modeling that allows weights for observations or by 

applying the Newton-Raphson iterative method to obtain ( 1)ˆ s
β and ( 1)ˆ s  . The 

maximization of the second term of ( )( | )sQ θ θ  is similar to the maximization of a 

multinomial likelihood and the parameters are estimated by summing up the 

expected numbers belonging in each of the r covariate classes dividing by the total 
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number in all classes; i.e. the parameter γ is updated at the (s+1)st iteration in the 

M-step by 
( )

( 1)ˆ , 1, ,

s
s k

k

m
k r

N
 

  .     (15) 

Iterating between the E- and M-steps until they meet a convergence criterion, the 

EM algorithm finds the MLE of θ. The overall operation of the EM algorithm for 

estimating the parameters of the models is shown by the block diagram given in 

Figure 1. 

 

 
Figure 1: Block diagram of the EM algorithm for estimating the parameters of 

the models 
 

(Louis, 1982) proposed a method for obtaining the observed information matrix of 

θ̂  when using the EM algorithm. This method is formulated in (Lipsitz & 

Ibrahim, 1996a) to apply in the case of missing covariates. The same method 

applies here to estimate the asymptotic variances of β̂ and ̂ . 

Input 

• Observations

• EM iteration index, s=0

• Initialize parameters 

θ(s) = (β(s)′, σ(s), γ(s)′) 

• Very small value ε

E-step 

• Estimate weight wij(θ
(s))

• Estimate Q(θ|θ(s))

M-step 

• Maximize Q(θ|θ(s))

• Update MLEs of parameters

θ(s+1) = (β(s+1)′, σ(s+1), γ(s+1)′)

Yes

No

Exit

• Converge?

max|θ(s+1)- θ(s)| ≤ ε

• Increase s by 1

s = s + 1
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4. Example 

This example illustrates a set of warranty claims data for a specific system 

(unit/component) of automobile. The units were produced during one and half 

year, sold during three years, warranty claims were recorded during four years 

observational period under the one-dimensional warranty of 18 months. A portion 

of the data frame is given in Table 1, where Age (T) = age of the component, 

Frequency (d) = frequency of failure or censored items, Indicator (δ) = 

failure/censored indictor (1 for an exact-failure time and 0 for a right-censored 

observation), Region (X1) = component used region [Region1 (R1), Region2 (R2), 

Region3 (R3), Region4 (R4)], Auto type (X2) = types of automobile in which the 

unit is used [Auto1 (A1), Auto2 (A2)], and Failure mode (X3) = failure modes of 

the failed units [Mode1 (M1), Mode2 (M2), Mode3 (M3)].  
 

Table 1: A portion of automobile component data frame that used in the 

Example  

No. 

(i) 

Age 

(T) 

Frequency 

(d) 

Indicator 

 (δ) 

Region 

(X1) 

Auto type 

(X2) 

Failure mode 

(X3) 

1 t1 d1 δ1=1 R1 A1 M1 

2 t2 d2 δ2=0    

3 t3 d3 δ3=1 R2 A2 M3 

4 t4 d4 δ4=0    

5 t5 d5 δ5=1 R4 A2 M2 

6 t6 d6 δ6=0    

 

If a unit fails within its warranty period, information on a number of variables 

including the age of the unit and the corresponding covariates X = (X1, X2, X3)′ are 

recorded in the warranty database. The censoring ages and the age-based number 

of censored units are calculated based on data provided by the production and 

sales departments, but the covariate values for censored units are unknown. 

Examination of the original recorded data revealed a few types of typographical 

error. After editing the relevant errors, among 126000 sold products 7366 claims 

were considered for analysis. The information regarding the names of the unit, 

failure modes, and used regions are not disclosed here to protect the proprietary 

nature of the information. 

Our interest in this example is to investigate how the age-based lifetime (age, T) 

of the unit differs with respect to three categorical covariates: Region (X1), Auto 

(X2) and Mode (X3). The number of observed failures belonging in R1, R2, R3, 
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R4, A1, A2, M1, M2, and M3 are respectively 4202, 668, 387, 2109, 2240, 5126, 

2577, 2433, and 2356. Without loss of generality, {Region1 (R1), Auto1 (A1), 

Mode1 (M1)} is assumed as the reference or baseline level, the level against 

which other levels are compared. Then the covariate vector X = (1, X1, X2, X3)′ can 

be rewritten as X = (1, XR2, XR3, XR4, XA2, XM2, XM3)′ under the assumption that all 

of the six dichotomous covariates X( )’s take values 1 or 0 to indicate the presence 

or absence of it. The Weibull and lognormal regression models, discussed in 

Section 2, are assumed for age T, f(t, δ| x, β, σ), with μ(X) = β′X = β0 + βR2XR2 + 

βR3XR3 + βR4XR4 + βA2XA2 + βM2XM2 + βM3XM3. The EM algorithm, discussed in the 

previous section, is applied to estimate the parameters and their asymptotic 

variances. There are r = 24 possible covariate classes and g(X|γ) is assumed to be 

a multinomial with γ = (γ1, …, γ24)′. Table 2 and Table 3 summarize the numerical 

results obtained via the EM algorithm for the Weibull and lognormal regression 

models, respectively. Programing codes written in R (Web site http://cran.r-

project.org/) using the survival library for estimating the parameters of the 

models. 

Table 2: MLEs of parameters for the Weibull regression model 

Parameters MLEs 
Std. 

Error 
Z value p value 

95% Confidence limits 

Lower limit Upper limit 

β0  4.3477 0.0223 194.5382 0.00E+00 4.3039 4.3915 

βR2 0.4474 0.0416 10.7664 2.69E-26 0.3659 0.5288 

βR3 0.4052 0.0574 7.0567 6.13E-12 0.2927 0.5177 

βR4 0.0947 0.0201 4.7044 6.24E-06 0.0552 0.1341 

βA2 -0.1369 0.0218 -6.2782 1.10E-09 -0.1797 -0.0942 

βM2 -0.0117 0.0204 -0.5729 3.39E-01 -0.0518 0.0284 

βM3 0.0258 0.0208 1.2439 1.84E-01 -0.0149 0.0666 

σ 0.5811 0.0024 -174.45* 0.00E+00 0.5764 0.5858 

* Test statistic for H0: σ = 1. 
 

Table 3: MLEs of parameters for the lognormal regression model 

Parameters MLEs 
Std. 

Error 
Z value p value 

95% Confidence limits 

Lower limit Upper limit 

β0  4.9915 0.0255 195.9747 0.00E+00 4.9416 5.0414 

βR2 0.4278 0.0471 9.0824 4.88E-19 0.3355 0.5202 

βR3 0.3579 0.0628 5.6944 3.63E-08 0.2347 0.4811 

βR4 0.1096 0.0246 4.4649 1.87E-05 0.0615 0.1578 

βA2 -0.2643 0.0262 -10.0759 3.59E-23 -0.3157 -0.2129 

βM2 -0.0419 0.0248 -1.6928 9.52E-02 -0.0904 0.0066 

βM3 0.0244 0.0252 0.9653 2.50E-01 -0.0251 0.0738 

σ 1.4000 0.0036 111.4849* 0.00E+00 1.3930 1.4071 
* Test statistic for H0: σ = 1. 
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In Table 2 and Table 3, very small p values for all of the regression coefficients, 

except for βM2 and βM3 (where p ≥ 0.05), indicate a strong evidence in favour of 

the dependency of lifetime on those covariates. Also, the both models reject the 

hypothesis, H0: σ = 1. 

A graphical method is applied based on the examination of residuals to assess the 

adequacy of the distributional assumptions. For the assumed models, the 

standardized residuals or censored Cox–Snell residuals (Cox & Snell, 1968) is 

defined in (Meeker & Escobar, 1998, p. 443) as 

ˆlog( ) ( )
ˆ exp , 1, ,

ˆ
i

i

t X
i n






 
  

 
.   (15) 

When ti is a censored observation, the corresponding residual is also censored and 

can be estimated using the complete data residual summed over the missing data 

at the last iteration of the EM algorithm, like the estimation of the denominator of 

weights, wij(θ) (Karim & Suzuki, 2007). If the model fits the data well, the Cox-

Snell residuals should approximately follow a unit exponential distribution, hence 

the cumulative hazard function of the residuals should be ˆ ˆ( )H    or 

ˆ ˆlog[ ( )]S     (Collett, 2015). Figure 2 shows the plots of the estimated Cox-Snell 

residuals, ̂ , versus ˆlog[ ( )]S  , respectively for the Weibull (left side) and 

lognormal (right side) regression models. 

 

  

Figure 2: Cox-Snell residual plot (left side for Weibull model, right side for 

lognormal model) 
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We see from the Cox-Snell residual plots, Figure 2, that the residuals fall on a 

straight line through the origin with a slope approximately one for the Weibull 

model comparatively better than the lognormal model. This indicates that the 

Weibull model gives a reasonable and better fit to the data than the lognormal 

model. Also the performance between two models is compared using the Akaike 

Information Criterion (AIC). The AIC is a measure of the goodness of fit of 

statistical models that is based on the concept of entropy. The formula for AIC is 

AIC 2(loglikelihood) 2( )k c    .   (16) 

where k denotes the number of covariates in the model not including the constant 

terms and c is the number of model-specific distributional parameters. Lower AIC 

values indicate a better model fit. The AIC values for the Weibull and lognormal 

models are respectively 132213.6 and 132568.5, indicate that the Weibull model 

provides better fit than the lognormal model for the observed data. Therefore, the 

Weibull regression model will be considered in the next analysis. (Karim & 

Suzuki, 2007) also applied the Weibull regression model for analyzing similar 

type of warranty claims data and from simulation studies they showed that the EM 

algorithm is applicable in the case of missing covariates for censored units. 

In many applications of Weibull distribution, interest centers on quantiles/ 

percentiles (or Bp life) rather than the distributional parameters. For example, in 

the automobile industry of Japan, B10 lifetime (means the 10
th

 percentile) is the 

most popular reliability index (Suzuki, 1985a). Table 4 shows the maximum 

likelihood estimates for the pth quantile,  

1
sev

ˆ ˆ ˆ( ) exp ( ) ( )pt X X p   
 

   (17) 

for given X (specified levels of covariates) and p (=0.10, 0.25, 0.50, 0.75), where
1

sev ( )p means the pth quantile of the standardized SEV distribution. The ˆ ( )pt X  

estimates the lifetime at which 100p% of the sample lies at or below that lifetime 

for given covariate X. For example, 0.5
ˆ ( )t X  provides the estimated median lifetime 

of the component for given X. In Table 4, X_a.b.c means the covariates {Region = 

a, Auto = b, Mode = c}.  

Table 4 shows that when covariates of used region, auto type, and failure mode 

are fixed respectively as Region1, Auto1, and Mode1, the ML estimate of t0.10(X) 

is 20.91. This estimate implies that 10 percent of the units are expected to fail at 

age 20.91 (the measurement unit is omitted). The estimates of quantiles for other 

values of p and for different conditions of covariates can be interpreted similarly. 
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Table 4: MLEs of pth quantiles at specific conditions of covariates 

       (X_a.b.c means the covariates {Region = a, Auto = b, Mode = c}) 

No. Covariates, X 
The pth quantile, ˆ ( )pt X , for given X and p 

p = 0.10 p = 0.25 p = 0.50 p = 0.75 

1 X_1.1.1 20.91 37.48 62.47 93.46 

2 X_1.1.2 20.66 37.04 61.74 92.37 

3 X_1.1.3 21.45 38.46 64.11 95.90 

4 X_1.2.1 18.23 32.68 54.48 81.50 

5 X_1.2.2 18.02 32.30 53.84 80.55 

6 X_1.2.3 18.71 33.54 55.90 83.63 

7 X_2.1.1 32.70 58.62 97.72 146.19 

8 X_2.1.2 32.32 57.94 96.58 144.48 

9 X_2.1.3 33.56 60.16 100.28 150.01 

10 X_2.2.1 28.52 51.12 85.22 127.48 

11 X_2.2.2 28.19 50.53 84.22 126.00 

12 X_2.2.3 29.26 52.46 87.45 130.82 

13 X_3.1.1 31.35 56.20 93.68 140.15 

14 X_3.1.2 30.99 55.55 92.59 138.51 

15 X_3.1.3 32.17 57.67 96.14 143.82 

16 X_3.2.1 27.34 49.01 81.70 122.21 

17 X_3.2.2 27.02 48.44 80.74 120.79 

18 X_3.2.3 28.06 50.29 83.83 125.41 

19 X_4.1.1 22.98 41.20 68.68 102.74 

20 X_4.1.2 22.72 40.72 67.88 101.54 

21 X_4.1.3 23.58 42.28 70.47 105.43 

22 X_4.2.1 20.04 35.93 59.89 89.59 

23 X_4.2.2 19.81 35.51 59.19 88.55 

24 X_4.2.3 20.57 36.87 61.46 91.94 
 

The condition of covariates {Region2, Auto1, and Mode3} is the best as the 

lifetime is maximum and the condition {Region1, Auto2, and Mode2} is the worst 

as the lifetime is minimum for the unit among the 24 conditions of covariates. 

Industrial personnel who are responsible for reliability, safety, and design 

decisions for the unit are interested to know whether a redesign would be needed 

to meet the design life specification for specified levels of the covariates. The 

results in Table 4 would be useful for this requirement. 
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Figure 3 shows the estimates of reliability function ˆ( | )R t X  (or survival function

ˆ( | )S t X ) of the unit for all 24 possible combinations of covariates (left side) and 

for the best-three and worst-three conditions of covariates (right side). 

 

  

Figure 3: Reliability functions (left side for all 24 possible combinations of 

covariates, right side for the best-three and worst-three conditions of covariates) 

 

It is a bit complicate to separate and explain the individual reliability function 

from the left side of Figure 3, therefore, we explain the right side of the figure. 

The best three conditions of covariates based on the estimated reliability are (i) 

X_2.1.3 {Region2, Auto1, and Mode3}, (ii) X_2.1.1 {Region2, Auto1, and 

Mode1} and (iii) X_2.1.2 {Region2, Auto1, and Mode2}. The right side of the 

figure gives RX_2.1.3(t=100.28) = 0.50, indicates the probability that an unit will 

last longer than age 100.28 under the covariates {Region2, Auto1, and Mode3} is 

0.50. Similarly, RX_2.1.1(t=97.72) = 0.50 and RX_2.1.2(t=96.58) = 0.50. The worst 

three conditions of covariates based on the estimated reliability are (i) X_1.2.2 

{Region1, Auto2, and Mode2}, (ii) X_1.2.1 {Region1, Auto2, and Mode1} and 

(iii) X_1.2.3 {Region1, Auto2, and Mode3}. It can be seen that RX_1.2.2(t=53.84) = 

0.50, shows the probability that the unit will survive more than age 53.84 is 0.50. 

Similarly, we get RX_1.2.1(t=54.48) = 0.50 and RX_1.2.3(t=55.90) = 0.50.   

The median lifetimes at the worst three conditions of covariates are about half 

compared to the best three conditions of covariates. The Figure 3 suggest that 

Region2 and Auto1 are the favorable covariates and Region1 and Auto2 are the 

harshest covariates for the unit. Therefore, to improve the reliability and to reduce 



 

 

 

 

 

 

 

240                                   International Journal of Statistical Sciences, Vol. 20(2), 2020 

 

the warranty costs, efforts should be concentrated to improve the unit for 

surviving in the harshest conditions of covariates {Region1 and Auto2}. That is, 

the harshest conditions covariates should be the targets of investigation to the 

manufacturer aimed at determining the root causes of failures and to eliminate or 

to reduce the risks associated those root causes. Design changes may be needed to 

protect the component from the harshest environmental effects encountered in the 

Region1 and Auto2.  

The amounts of production and sales for different time intervals are collected from 

sources other than the warranty claims database of the automobile component 

considered in the example. The age-based number of censored units are calculated 

using the amounts of sales and failures. One of the limitations of the data is that 

there is a possibility to be minor differences between the calculated number of 

censored units and the exact censored units for some time intervals.  

5. Concluding Remarks 

The Weibull and lognormal regression models have been considered for modeling 

the lifetime of an object as a function of covariates. Because of missing covariates 

for censored items, the EM algorithm is applied to estimate the model parameters 

and their confidence intervals. A set of warranty claims data of an automobile 

component is considered as an example. For the example component, the model 

selection criterion, AIC, and the Cox-Snell residual plot suggested that the 

Weibull regression model provides a reasonable and better fit to the data than the 

lognormal regression model. 

Estimates of the quantiles and reliability functions of the Weibull model at all 

possible conditions of covariates were presented for assessing the performance of 

the component with respect to these covariates. It is observed that the condition of 

covariates {Region2, Auto1, and Mode3} is the best as the lifetime is maximum 

and the condition {Region1, Auto2, and Mode2} is the worst as the lifetime is 

minimum for the component among the 24 conditions of covariates. It is also 

observed that the Region2 and Auto1 are the favorable and Region1 and Auto2 

are the harshest conditions of covariates for the component. To improve the 

reliability and to reduce the warranty costs, efforts should be concentrated to 

improve the component for surviving in the harshest conditions of covariates 

{Region1 and Auto2}. That is, the harshest conditions covariates should be the 

targets of investigation to the manufacturer aimed at determining the root causes 

of failures and to eliminate or to reduce the risks associated those root causes. 
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Design changes may be needed to protect the component from the harshest 

environmental effects encountered in the Region1 and Auto2.  

An important extension of future study is to use modelling of lifetime based on 

mileage (actual usage measured in km/mile) or to consider the mileage 

accumulation rate or usage rate (usage per unit of age) as another variable in the 

model, which would be useful in many applications. However, as suggested in 

(Suzuki, 1985a), (Suzuki, 1985b), (Lawless, Hu, & Cao, 1995), (Hu, Lawless, & 

Suzuki, 1998), (Attardi, Guida, & Pulcini, 2005), and (Rai & Singh, 2005) that the 

usage-based effective estimation requires additional supplementary information 

about mileage accumulation from sources other than the warranty claims database.  
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