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Abstract 

The minimum β-divergence estimators of multivariate Gaussian location and scatter 

parameters are highly robust against outliers. Since estimating the location and scatter 

parameters are the cornerstone of many multivariate statistical methods, the minimum β-

divergence estimators of those parameters are the important building block when 

developing robust multivariate techniques including robust principal component analysis, 

factor analysis, canonical correlation analysis, independent component analysis, multiple 

regression analysis, cluster analysis and discriminant analysis. It also serves as a 

convenient tool for detection of multivariate outliers. The minimum β-divergence 

estimators of multivariate Gaussian location and scatter parameters are reviewed, along 

with its main properties such as affine equivariance, breakdown value, and influence 

function. We discuss its computation and some applications in applied and 

methodological multivariate statistics.  
 

Keywords: Multivariate Analysis, Multivariate Normal Distribution, Minimum β- 

                     Divergence Estimators, Orthogonal Affine Equivariance and Robustness.   
 

1. Introduction 

The parameter estimation of location vector and scatter matrix is the cornerstone 

of multivariate data analysis, as it provides necessary inputs in the subsequent 

inferential statistical methods [Anderson, 2003; Johnson and Wichern, 2007)]. 

The sample mean and the sample covariance matrix are the most common 

estimators of multivariate location vector and scatter matrix, respectively. In the 

multivariate location and scatter setting, the data are stored in an n×p data matrix 

Xn = (x1, …, xn)
T
 with xi = (xi1,…, xip)

T
  the i-th vector observation. Here n stands 

for the number of objects and p for the number of variables and the superscript T 

for the transpose.  Then the estimators of location vector µ and the scatter matrix 

V are as follows 
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�̂� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1                                                                                                       (1) 

�̂� =
1

𝑛
∑  (𝑥𝑖 − �̂�)𝑇(𝑥𝑖 − �̂�)𝑛

𝑖=1 ,                                                                          (2) 

which are also known as sample mean vector  �̂� and the sample covariance matrix 

�̂� , respectively. They are the optimal estimators in a multivariate Gaussian 

context, which can maximizes likelihood function as well as minimizes Kullback 

Leibler (KL) divergence. Both estimators are affine equivariant. However, they 

are very much sensitive to outlying observations. Any real dataset may often 

contaminated by outlying observations due to several steps involves in the data 

generating processes. So the field of robustness becomes popular among 

statisticians and researchers. Several authors have proposed various robust 

estimators of location and scatter to overcome the problem of outlying 

observations in multivariate analysis [Rousseeuw, 1985; Hampel, 1986; Croux, 

1999; Maronna and Zamar, 2002]. In this paper, we introduce the minimum β-

divergence estimators as an alternative high-breakdown robust and equivariant 

estimators of multivariate location and scatter parameters [Mollah et al. 2007, 

2008a, 2010a]. We also review some of its other interesting properties and 

applications in different areas of multivariate analysis.   

 

2. Description of the Minimum β-Divergence Estimators of  

    Multivariate Location and Scatter Parameters 
 

We assume that the observations are sampled from multivariate Gaussian 

distribution with location parameter µ and scatter parameter V, where µ is a vector 

with p components and V is a positive definite p×p matrix. The multivariate 

Gaussian distribution is elliptically symmetric and unimodal, which is defined in 

the form 

𝑓(𝑥|𝜇, 𝑉) = 𝑘. 𝑒𝑥𝑝 {−
1

2
𝑑2(𝑥|𝜇, 𝑉)},                                                                (3) 

where, 𝑘 = |2𝜋𝑉|−1/2 and  

𝑑(𝑥|𝜇, 𝑉) = √(𝑥 − 𝜇)/𝑉−1(𝑥 − 𝜇)                                                                           (4) 
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which is known as the Mahalanobis distance between a data vector 

𝑥 and its mean vector µ.  

Then the β-divergence between the true density 𝑔(𝑥) and model density f(𝑥|𝜃 =

{ 𝜇, 𝑉}  ) is defined as  

 

                      𝔇𝛽(𝑔(𝑥), 𝑓(𝑥|𝜃)) =  ∫ [
1

𝛽
{𝑔𝛽(𝑥) − 𝑓𝛽(𝑥|𝜃)}𝑔(𝑥) −

                                                                 
1

𝛽+1
{𝑔𝛽+1(𝑥) −  𝑓𝛽+1(𝑥|𝜃)}] 𝑑𝑥                 (5) 

 

for β > 0, which is modified version of the density power divergence [Basu et al. 

1998, Minami and Eguchi, 2002] . When β0, the β-divergence reduces to KL-

divergence, that is  

               𝔇𝛽(𝑔(𝑥), 𝑓(𝑥|𝜃))𝛽→0
𝐿𝑖𝑚 = ∫ 𝑔(𝑥)𝑙𝑜𝑔

𝑔(𝑥)

𝑓(𝑥|𝜃)
𝑑𝑥 

                                              = 𝔇𝐾𝐿(𝑔(𝑥), 𝑓(𝑥|𝜃))                                          (6) 

Both divergences measure the discrepancy between two densities and satisfy the 

inequalities  

                𝔇𝐾𝐿(𝑔(𝑥), 𝑓(𝑥|𝜃)) ≥ 0 and 𝔇𝛽(𝑔(𝑥), 𝑓(𝑥|𝜃)) ≥ 0,  

[Minami and Eguchi, 2002; Mollah et al. 2006]. The equality holds if and only if 

𝑔(𝑥) = f(𝑥|𝜃) for all 𝑥 and 𝜃 = { 𝜇, 𝑉} for both cases. Therefore, minimizers of 

both divergences would be the optimal solution for  𝜃 = { 𝜇, 𝑉} in absence of 

outlying observation. It should be noted here that the minimizer of KL-divergence 

is equivalent to the maximizer of likelihood function (LF). The minimum β-

divergence estimator for 𝜃 = { 𝜇, 𝑉} is defined as    
 

              𝜃𝛽 = 𝑎𝑟𝑔min
𝜃

�̂�𝛽(𝑔(𝑥), 𝑓(𝑥|𝜃)) = 𝑎𝑟𝑔max
𝜃

𝐿𝛽(𝜃|𝑋)                      (7) 

where  

                     𝐿𝛽(𝜃|𝑋) =
1

𝛽
[

1

𝑛𝑙𝛽(𝜃)
∑ 𝑓𝛽(𝑥|𝜃) − 1𝑛

𝑖=1 ]                                          (8) 

which is known as β-likelihood function with  𝑙𝛽(𝜃) = (1 + 𝛽)−𝑝/2|2𝜋𝑉|
−

𝛽2

2(1+𝛽). 
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The β-Likelihood reduces to average of log-likelihood function when β0. That 

is,  

  𝐿𝛽(𝜃|𝑋)                         𝛽→0
𝐿𝑖𝑚 =   𝐿0(𝜃|𝑋) =

1

𝑛
∑ log 𝑓(𝑥𝑖|𝜃)𝑛

𝑖                                   (9) 

The minimum β-divergence estimators  𝜃𝛽 = {�̂�𝛽 , �̂�𝛽} of 𝜃 = {𝜇, 𝑉} are obtained 

iteratively as follows: 

               �̂� 𝛽
(𝑟+1)

=  
∑ 𝑊𝛽(𝑥𝑗|�̂�𝛽

(𝑟)
,𝑉𝛽

(𝑟)
)𝑥𝑗

𝑛
𝑗=1

∑ 𝑊𝛽(𝑥𝑗| �̂�
𝛽
(𝑟)

,�̂�
𝛽
(𝑟)

)𝑛
𝑗=1

                                                             (10) 

             �̂� 𝛽
(𝑟+1)

= (1 + 𝛽)
∑ 𝑊𝛽(𝑥𝑗𝑘| �̂�𝛽

(𝑟)
,�̂�𝛽

(𝑟)
)(𝑥𝑗−�̂�𝛽

(𝑟)
) (𝑥𝑗−�̂�𝛽

(𝑟)
)

/
𝑛
𝑗=1

∑ 𝑊𝛽(𝑥𝑗| �̂�𝛽
(𝑟)

,   �̂�
𝛽
(𝑟)

)𝑛
𝑗=1

                      (11) 

and  

          𝑊𝛽(𝑥|�̂�𝛽
(𝑟)

, �̂�𝛽
(𝑟)

) = 𝑒𝑥𝑝 {−
𝛽

2
𝑑2 (𝑥| �̂�𝛽

(𝑟)
, �̂�𝛽

(𝑟)
)}                                    (12) 

The formulation of equations (10-12) is described in Mollah et al. (2007, 2010a).  

The function in equation (12) is called the β-weight function, which plays the key 

role for robust estimation of the parameters. If β tends to 0, then the equations (10) 

and (11) are reduced to the classical non-iterative estimates of mean and 

covariance matrix as given in equations (1) and (2) respectively. The robustness 

performance of the minimum β-divergence estimator 𝜃𝛽 = {�̂�𝛽,�̂�𝛽}  of 𝜃 =

{𝜇, 𝑉} depends on the value of the tuning parameter β and initialization of the 

parameters.  
  

2.1. β-Selection using k-Fold Cross Validation  

To select the appropriate β by k-fold cross validation (CV), the tuning parameter β 

is fixed to 𝛽0. The steps for selecting the appropriate β by k-fold cross validation 

is given below:  
 

Step-1:  Dataset  𝑆 = {𝑥𝑖; 𝑖 = 1,2, … , 𝑛} randomly split into k subsets S1, S2,…, Sk 

where 𝑆𝑗 = {𝑥(𝑡)|𝑥(𝑡) ∈ 𝑆, 𝑡 = 1,2, … , 𝑛𝑗} and  ∑ 𝑛𝑗 = 𝑛𝑘
𝑗=1   

Step-2: Let 𝑆𝑗
𝑐 be the complement set of Sj, j=1,2,…,k. 
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Step-3: Estimate �̂�𝛽 and  �̂�𝛽 iteratively by equations (7-8) based on dataset 𝑆𝑗
𝑐 

Step-4: Compute CVj(β) using the dataset  𝑆𝑗, for j=1, 2,.., k 

CVj(β) =𝐿𝛽0
(�̂�𝛽,�̂�𝛽| 𝑆𝑗), where  

𝐿𝛽0
(�̂�𝛽,�̂�𝛽| 𝑆𝑗) =

1

𝛽0
[1 −

1

𝑛𝑗
|�̂�𝛽|

−
𝛽0

2(1+𝛽0) ∑ 𝑊𝛽0
(𝑥𝑗|𝑥𝑗∈ 𝑆𝑗

�̂�𝛽,�̂�𝛽] 

Step-5: 
Compute     �̂� =

𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

CV(𝛽)  

where CV(𝛽) = 
1

𝑛
∑ 𝐶𝑉𝑗(𝛽) 𝑘

𝑗=1  

More discussion about 𝛽  selection also can be found in Mollah et al. (2007, 

2010a). 
 

2.2. Influence Function 

The influence function for the estimator T at x under the distribution F is defined 

as 
 

𝐼𝐹(𝑥; 𝑇, 𝐹) = lim
𝑡→0

𝑇[(1 − 𝑡)𝐹 + 𝑡∆𝑥] − 𝑇(𝐹)

𝑡
 

where ∆𝑥 is the probability measure that puts mass 1 at the point x. If the gross 

error sensitivity (GES), that is,  lim𝑥 |𝐼𝐹(𝑥; 𝑇, 𝐹) | is finite, then the estimator T is 

said to be B-robust under the distribution F (c.f. chapter 5 of Hampel et al. 

(1986)).  

The robustness of the minimum β-divergence estimators were investigated by the 

influence function (Mollah et el. 2007). The influence function for the location 

estimator �̂�𝛽 = 𝜇𝛽(𝑋) at x under the distribution F is given by 

                    𝐼𝐹(𝑥; 𝜇𝛽(𝑋), 𝐹) = −𝜇 +
𝑊𝛽(𝑥|𝜇,𝑉)𝑥

𝐸𝑋{𝑊𝛽(𝑋|𝜇,𝑉)}
         (13) 

The influence function for the scatter estimator �̂�𝛽 = 𝑉𝛽(𝑋)  at x under the 

distribution F is given by 

𝐼𝐹(𝑥; 𝑉𝛽(𝑋), 𝐹) = −𝑉 +
𝑊𝛽(𝑥|𝜇,𝑉)(𝑥−𝜇)(𝑥−𝜇)/

𝐸𝑋{𝑊𝛽(𝑋|𝜇,𝑉)}
                                                (14) 
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Obviously, the gross error sensitivity (GES), that is,  𝑙𝑖𝑚𝑥 IF(𝑥; 𝑇, 𝐹) is finite for 

both location and scatter estimators, since if the components of x become larger, 

then the corresponding weight 𝑊𝛽(𝑥|𝜇, 𝑉) becomes smaller for both IF. Thus both 

estimators are known as B-robust under the distribution F. More discussion for 

both IF can be found in Mollah et al. (2007).  
 

2.3. Parameters Initialization and Breakdown Points of the Estimates 

The robustness of the minimum β-divergence estimator 𝜃𝛽 = {�̂�𝛽,�̂�𝛽}  for the 

Gaussian parameter  𝜃 = {𝜇, 𝑉} is measured by means of finite-sample 

replacement breakdown point suggested by Donoho and Huber (1983). The 

breakdown point of an estimator measures the smallest fraction m/n of outlying 

observations that carry the estimates beyond all bounds (Lopuhaa and Rousseeuw, 

1991; Hubert and Debruyne, 2010).  Denote Xn,m as the data matrix obtained by 

replacing m data vectors xj+1, …, xj+m of Xn by outlying observations satisfying the 

Tukey-Huber contamination model (THCM; Agosinelli et al. 2015).The 

breakdown point for location estimator �̂�𝛽 = 𝜇𝛽(𝑋𝑛) is defined as   

𝜀∗( �̂�𝛽; 𝑋𝑛) = min1≤𝑚≤𝑛 {
𝑚

𝑛
:  sup𝑚‖𝜇𝛽(𝑋𝑛) − 𝜇𝛽(𝑋𝑛,𝑚)‖ = ∞} ,                (15) 

 

where the supremum (sup) is taken over all possible m outlying observations in 

Xn,m. The breakdown point for the scatter estimator �̂�𝛽 = 𝑉𝛽(𝑋𝑛) is defined as:   

      𝜀∗( �̂�𝛽; 𝑋𝑛) = min1≤𝑚≤𝑛 {
𝑚

𝑛
: sup𝑚 𝜑 (𝑉𝛽(𝑋𝑛), 𝑉𝛽(𝑋𝑛,𝑚)) = ∞} ,            (16) 

where 𝜑 (A, B)=max{|𝝀1(A)- 𝝀1(B)|, |𝝀p(A)
-1

- 𝝀p(B)
-1

|}, with 𝝀1(A)≥ ….≥𝝀p(A) 

being the ordered eigen values of the matrix A. However, the breakdown points in 

equations (15-16) depend on the value of the tuning parameter β and the 

initialization of the parameters in the iterative equations (10-12). During the first 

iteration (r=0), the mean vector �̂�𝛽
(𝑟)

 in the β-weight function (eq.12) is initialized 

by the coordinate-wise sample median vector (𝑥𝑚𝑑), since mean vector and the 

coordinate-wise median vector are same for multivariate Gaussian distribution and 

the coordinate-wise median vector is highly robust estimator of location parameter 

against outliers with breakdown point [(n+1)/2]/n ≈ 0.5 (Lopuhaa and Rousseeuw, 

1991). The covariance matrix �̂�𝛽
(𝑟)

 in the β-weight function (eq.12) is initialized 
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by the identity matrix I. Then the first iterative solution 𝜃𝛽
(1)

= (�̂�𝛽
(1)

, �̂�𝛽
(1)

) moves 

from 𝜃𝛽
(0)

= (�̂�𝛽
(0)

, �̂�𝛽
(0)

) towards the optimal solution of 𝜃 = {𝜇, 𝑉} in presence of 

outlying observations also. To confirm it, let m data vectors xj+1, …, xj+m in the 

data matrix Xn are contaminated by the extreme outliers. With these outlying data 

vectors, the Mahalanobis distance produces 𝑑2(𝑥𝑗+𝑘| �̂�𝛽
(𝑟)

= 𝑥𝑚𝑑 , �̂�𝛽
(𝑟)

= 𝐼) → ∞ 

and the corresponding β-weight function produces 𝑊𝛽(𝑥𝑖+𝑘| �̂�𝛽
(𝑟)

= 𝑥𝑚𝑑 , �̂�𝛽
(𝑟)

=

𝐼) → 0, (𝑘 = 1,2, … , 𝑚) by equation (12). On the other hand, with the usual data 

vectors, the Mahalanobis distance produces  𝑑2(𝑥𝑖| �̂�𝛽
(𝑟)

= 𝑥𝑚𝑑 , �̂�𝛽
(𝑟)

= 𝐼) → 0 

and the corresponding β-weight function produces 𝑊𝛽(𝑥𝑖| �̂�𝛽
(𝑟)

= 𝑥𝑚𝑑 , �̂�𝛽
(𝑟)

=

𝐼) → 1, (𝑖 = 1, … , 𝑗, 𝑗 + 𝑚 + 1, … , 𝑛)  by equation (12). Thus, outlying 

observations cannot influence the estimates at all computed by equations (10-11) 

during first iteration.  

During the second iteration (r=1), the mean vector �̂�𝛽
(𝑟)

 in the β-weight function 

(eq.12) is replaced by the updated mean vector �̂�𝛽
(1)

 which is more close to the 

optimal solution of the mean vector. Then the covariance matrix �̂�𝛽
(𝑟)

is replaced 

by the updated covariance matrix �̂�𝛽
(1)

. Then the second iterative solution 

𝜃𝛽
(2)

= (�̂�𝛽
(2)

, �̂�𝛽
(2)

) moves from 𝜃𝛽
(1)

= (�̂�𝛽
(1)

, �̂�𝛽
(1)

)  towards the optimal solution 

of 𝜃 = {𝜇, 𝑉} more accurately. This is because, with the previous m outlying data 

vectors, the Mahalanobis distance again produces 𝑑2 (𝑥𝑗+𝑘| �̂�𝛽
(𝑟)

= �̂�𝛽
(1)

, �̂�𝛽
(𝑟)

=

�̂�𝛽
(1)

) → ∞  and the corresponding β-weight function produces 𝑊𝛽(𝑥𝑖+𝑘| �̂�𝛽
(𝑟)

=

�̂�𝛽
(1)

, �̂�𝛽
(𝑟)

= �̂�𝛽
(1)

) → 0, (𝑘 = 1,2, … , 𝑚) by equation (12) more accurately. On the 

other hand, with the usual data vectors, the Mahalanobis distance produces  

𝑑2 (𝑥𝑖| �̂�𝛽
(𝑟)

= �̂�𝛽
(1)

, �̂�𝛽
(𝑟)

= �̂�𝛽
(1)

) → 0  and the corresponding β-weight function 

produces 𝑊𝛽(𝑥𝑖| �̂�𝛽
(𝑟)

= �̂�𝛽
(1)

, �̂�𝛽
(𝑟)

= �̂�𝛽
(1)

) → 1, (𝑖 = 1, … , 𝑗, 𝑗 + 𝑚 + 1, … , 𝑛)  by 

equation (12) more accurately. It should be noted here that if n<p or |�̂�𝛽
(𝑟)

| =

0, then ⋀̂𝛽
(𝑟)

= diag(�̂�11,𝛽
(𝑟)

 , �̂�22,𝛽
(𝑟)

, … , �̂�𝑝𝑝,𝛽
(𝑟)

),  the diagonal matrix, can be used 

instead of the covariance matrix �̂�𝛽
(𝑟)

 in the β-weight function (12) to calculate the 
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weight for each data vector, where �̂�𝑖𝑖,𝛽
(𝑟)

 is the ith diagonal element of �̂�𝛽
(𝑟)

 (for 

r>0). Thus, outlying observations cannot influence the estimates obtained by 

equations (10-11) at all during second iteration also. Similarly,  in each iteration, 

the β-weight function with an appropriate β produces larger weights with usual 

(uncontaminated) data vectors and smaller weight for the outlying (contaminated) 

data vectors which leads the convergence of the iterative equations (10-11) to the 

optimal solution of 𝜃 = {𝜇, 𝑉} accurately when upto m=n/2=50% of data vectors 

in Xn,m are contaminated by outliers. If more than m=n/2 of data vectors are 

outlying in Xn,m, then coordinate-wise median vector fails to initialize the mean 

vector �̂�𝛽
(𝑟)

 to the good part of the dataset. Then the iterative equations (10-11) 

may also fail to converge in the optimal solution of 𝜃 = {𝜇, 𝑉}.   Thus the 

minimum β-divergence estimators 𝜃𝛽 = {�̂�𝛽,�̂�𝛽} with an appropriate β are claimed 

as highly robust estimators against outliers with breakdown point [(n+1)/2]/n ≈ 

0.5 if mean vector is initialized by the coordinate-wise median vector in equation 

(12). However, the minimum β-divergence estimators 𝜃𝛽 = {�̂�𝛽,�̂�𝛽}  with an 

appropriate β can also produce reasonable estimates when more than m=n/2 of 

data vectors are outlying in Xn,m if the mean vector �̂�𝛽
(𝑟)

 is initialized by a data 

vector belonging to the good part in Xn,m (Mollah et al., 2010a). Thus the 

breakdown point [(n+1)/2]/n ≈ 0.5 of 𝜃𝛽 = {�̂�𝛽,�̂�𝛽} can be increased based on the 

initialization of the parameters which may be the open challenge to the researcher.   
 

2.4 Equivariance Property of the Estimators 

The minimum β-divergence estimators 𝜃𝛽 = {�̂�𝛽 = 𝜇𝛽(𝑋), �̂�𝛽 = 𝑉𝛽(𝑋)} for the 

Gaussian parameters  𝜃 = {𝜇, 𝑉} satisfy the affine equivariance properties as 

follows  

 

𝜇𝛽(𝐴𝑋 + 𝑏) = ∑ 𝜑𝑖(𝐴𝑥𝑖 + 𝑏) = 𝐴 ∑ 𝜑𝑖𝑥𝑖 + 𝑏𝑛
𝑖=1

𝑛
𝑖=1 = 𝐴𝜇𝛽(𝑋) + 𝑏            (17) 

and 

    𝑉𝛽(𝐴𝑋 + 𝑏) = ∑ 𝜑𝑖[𝐴𝑥𝑖 + 𝑏 − 𝜇𝛽(𝐴𝑥𝑖 + 𝑏)][𝐴𝑥𝑖 + 𝑏 − 𝜇𝛽(𝐴𝑥𝑖 + 𝑏)]/

𝑛

𝑖=1

= 𝐴𝑉𝛽(𝑋)𝐴/                                                                                          (18) 
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where A be a p×p non-singular/orthogonal matrix and b be a non-zero p-vector 

and  

𝜑𝑖 = 𝑊𝛽 (𝑥𝑖|𝜇𝛽(𝑋), 𝑉𝛽(𝑋)) / ∑ 𝑊𝛽 (𝑥𝑗|𝜇𝛽(𝑋), 𝑉𝛽(𝑋))

𝑛

𝑗=1

  

with 𝑊𝛽(𝑥|𝜇𝛽(𝑋), 𝑉𝛽(𝑋)) = 𝑒𝑥𝑝 {−
𝛽

2
𝑑2 (𝑥| 𝜇𝛽(𝑋), 𝑉𝛽(𝑋))}               

The equations (17-18) satisfy the orthogonally affine equivariance property from 

the fact that the Mahalanobis distance 

𝑑(𝑥|�̂�𝛽
(𝑟)

, �̂�𝛽
(𝑟)

) = √(𝑥 − �̂�𝛽

(𝑟)
)

/

�̂�𝛽

(𝑟)−1
(𝑥 − �̂�𝛽

(𝑟)
) in the β-weight function (12) is 

orthogonally affine invariant, since  �̂�𝛽
(𝑟)

is initialized by the coordinate-wise 

sample median vector (xmd) and �̂�𝛽
(𝑟)

 is initialized by the identity matrix I at r=0. 

It should be noted here again that the coordinate-wise sample median vector is 

equivalent to the sample mean vector in the case of multivariate normal 

distribution.  Also the equations (17-18) satisfy the affine equivariance property 

from the fact that the Mahalanobis distance 

𝑑(𝑥|�̂�𝛽
(𝑟)

, �̂�𝛽
(𝑟)

) = √(𝑥 − �̂�𝛽

(𝑟)
)

/

�̂�𝛽

(𝑟)−1
(𝑥 − �̂�𝛽

(𝑟)
)  in the β-weight function (eq. 

12) is affine invariant if �̂�𝛽
(𝑟)

and �̂�𝛽
(𝑟)

 are initialized by any of the affine 

equivariance estimators of 𝜇 and 𝑉 at r=0. Obviously, the reweighted estimators 

(17-18) satisfy both the affine and orthogonally-affine equivariance property in 

each of the iterations.  However, the minimum β-divergence estimators 𝜃𝛽 =

{�̂�𝛽 = 𝜇𝛽(𝑋), �̂�𝛽 = 𝑉𝛽(𝑋)}  satisfying the affine equivariance property can 

achieve the breakdown point [(n-p+1)/2]/n <0.5 for p>1. On the other hand, it can 

achieve the breakdown point [(n+1)/2]/n ≈ 0.5 satisfying the affine equivariance 

property orthogonally.  

 

3. Applications  

3.1 Multivariate Outlier Detection using 𝜷-Weight Function 

A data vector 𝑥  in a dataset is said to be outlying if at least one component of 

𝑥 = {𝑥1, 𝑥2, … … , 𝑥𝑝} is contaminated by outlier. To derive a criterion whether the 
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data vector 𝑥 is contaminated or not, the  𝛽-weight function (12) is rewrite as 

follows 

𝑊𝛽(𝑥|�̂�𝛽 , �̂�𝛽) exp {−
𝛽

2
𝑑2(𝑥|�̂�𝛽 , �̂�𝛽)} ,                                                           (19)                                     

where (�̂�𝛽 , �̂�𝛽)  are the minimum 𝛽-divergence estimators of (𝜇, 𝑉) obtained by 

iterative equations (10-12). The values of this weight function lie between 0 and 

1as discussed previously. This weight function produces larger weight if 𝑥 is a 

usual data vector and smaller weight if 𝑥 is an unusual data vector. Therefore, the 

β-weight function (eq.19) is used to detect outlier as follows: 

𝑊𝛽(𝑥|�̂�𝛽 , �̂�𝛽) = {
 > 𝜕, if 𝑥 is usual data vector                
≤ 𝜕, if 𝑥 is outlying data vector          

                             (20)            

The threshold value 𝜕 can be determined by the quantile values of 𝑊𝛽(𝑥|�̂�𝛽 , �̂�𝛽) 

for j = 1,2,……,𝑛 with probability  

Pr{𝑊𝛽(𝑥|�̂�𝛽 , �̂�𝛽) ≤ 𝜕} ≤ 𝑝,                                                                            (21) 

where p is the probability for selecting the cut-off value 𝜕 as a quantile value 

based on the empirical distribution of 𝑊𝛽(𝑥|�̂�𝛽 , �̂�𝛽). The value of p should less 

than 0.1 to fix the cut-off value  𝜕 for detection of outlying data vector using 

equation (20). This idea was first introduced in Mollah et al. (2012).  

The criteria whether an unlabeled data vector 𝑥 is contaminated by outlier or not, 

is defined as follows: 

𝑤𝛽(𝑥) = ∑ 𝑊𝑘,𝛽(𝑥|�̂�𝑘,𝛽 , �̂�𝑘,𝛽)𝐾
𝑘=1 = {

≥ 𝜕, if 𝑥 is not outlying
< 𝜕, if 𝑥 is outlying        

                    (22)                      

where, 𝜕 = ∑ 𝜕𝑘,𝐾
𝑘=1  here  𝜕𝑘 is the cut-off value for outlier detection in the kth 

population obtained by equations (19-20) and (�̂�𝑘,𝛽 , �̂�𝑘,𝛽)  are the estimators of 

(𝜇, 𝑉 ) for kth population.   
 

3.2. Clustering and Classification 

Clustering is an unsupervised learning which plays the key role in the field of data 

mining. Basically, there are three types of clustering approaches known as 

partitioned based, model based and hierarchical clustering (HC). The later HC 

approach seems to be more useful than the former partitioned and model based 



 

 

 

 

 

 

 

 

Mollah and Bhattacharjee: Minimum β-Divergence Estimators …                              79 

 

 

approaches, since HC does not require to knowing the number of clusters unlike 

the former two approaches. It becomes popular for high-throughput high-

dimensional gene expression data analysis from the research work of Eisen et al. 

(1998). The HC approaches are formulated based on the distance matrix or 

dissimilarity matrix using single, complete or average linkages. The dissimilarity 

matrix D is defined based on the correlation matrix R. However, the correlation 

matrix R as well as the distance matrix or dissimilarity matrix D are sensitive to 

outlying observations, which leads the misleading clustering results by HC. To 

overcome this problem, Mollah et al. (2009) proposed β-HC by robustifying R 

based on the minimum β-divergence estimator �̂�𝛽 of the covariance matrix V as 

follows:      

Let �̂�𝛽 = [�̂�𝑖𝑗]
𝑝×𝑝

, which implies �̂�𝛽 = [�̂�𝑖𝑗]
𝑝×𝑝

, the minimum β-divergence 

estimator of the correlation matrix R, where �̂�𝑖𝑗 = �̂�𝑖𝑗/√�̂�𝑖𝑖�̂�𝑗𝑗 . Then the β-

dissimilarity matrix is defined as �̂�𝛽 = [�̂�𝑖𝑗]
𝑝×𝑝

 , where �̂�𝑖𝑗 = 1 − �̂�𝑖𝑗 ≥ 0. Then 

the β-dissimilarity matrix �̂�𝛽 is used instead of traditional dissimilarity matrix D 

for formulating HC algorithms from the robustness viewpoints. More discussion 

about β-HC and its application for gene expression data analysis can be found in 

Mollah et al. (2009). Badsha (2010) and Badsha et al. (2013) extended β-HC to β-

CHC for complementary hierarchical clustering (CHC; Nowak and Tibshirani, 

2008) from the robustness viewpoints. Kabir (2018) and Kabir and Mollah (2018) 

also proposed the robustification of the model based clustering using the 

minimum β-divergence estimators of the mean vectors µ’s and the covariance 

matrices V’s obtained by the EM algorithm.  

On the other hand, classification is a supervised learning which plays the key role 

in the field of machine learning for class prediction or pattern recognition. In the 

literature, there are several approaches addressed for classifications (Anderson 

2003; Johnson and Wichern 2007), where Gaussian Bayes classifier is one of the 

most popular candidate. However, most of the existing classifiers including 

Gaussian Bayes classifiers are very much sensitive to outliers. So, they can 

produce misleading prediction results in presence of outliers. To overcome this 

problem, Matiur (2012) and Matiur and Mollah (2018) proposed the 

robustification of Gaussian Bayes Classifier based on the minimum β-divergence 

estimators of the mean vectors µ’s and the covariance matrices V’s. The 
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classification region Rj for classifying the test vector x to the jth population by the 

Gaussian Bayes β-classifier is defined as  

                  𝑅𝑗: �̂�𝑖𝑗,𝛽(𝑥) > log
[𝑞𝑖𝐶(𝑗|𝑖)]

[𝑞𝑗𝐶(𝑖|𝑗)]
, 𝑖 = 1,2, … , 𝑚 (𝑖 ≠ 𝑗)                           (23) 

 

where qi’s are the mixing proportions, C(j|i) is the cost of misclassifying an 

observation from jth population as from ith population and  

�̂�𝑖𝑗,𝛽(𝑥) =
1

2
log

|�̂�𝑖,𝛽𝑖
|

|�̂�𝑗,𝛽𝑗
|

+
1

2
(𝑥 − �̂�𝑖,𝛽𝑖

)
/
�̂�𝑖,𝛽𝑖

−1(𝑥 − �̂�𝑖,𝛽𝑖
)

−
1

2
(𝑥 − �̂�𝑗,𝛽𝑗

)
/

�̂�𝑗,𝛽𝑗

−1 (𝑥 − �̂�𝑗,𝛽𝑗
)                                                   (24) 

which is known as the Gaussian Bayes β-classifier. It is non-linear. It reduces to 

the conventional non-linear Gaussian Bayes classifier for β=0. If we assume 

homogeneous populations (i.e. V1=V2=…=Vm), the non-linear β-classifier reduces 

to the linear classifier as follows 

�̂�𝑖𝑗,𝛽(𝑥) = 𝑥/�̂�𝛽
−1 (�̂�𝑗,𝛽𝑗

− �̂�𝑖,𝛽𝑖
) −

1

2
(�̂�𝑗,𝛽𝑗

+ �̂�𝑖,𝛽𝑖
)

/

�̂�𝛽
−1 (�̂�𝑗,𝛽𝑗

− �̂�𝑖,𝛽𝑖
)        (25) 

which is also known as β-LDA. It reduces to the Gaussian Bayes LDA for β=0. 

Here (�̂�𝑖,𝛽𝑖
, �̂�𝑖,𝛽𝑖

)  are minimum β-divergence estimates of (𝜇𝑖, 𝑉𝑖)  computed by 

equations (10-12) based on the training samples from the ith multivariate 

Gaussian population and �̂�𝛽 =
1

𝑛
∑ 𝑛𝑖�̂�𝑖,𝛽𝑖

𝑚
𝑖=1 , the pooled variance. More discussion 

about robustification of Bayes classifiers and their applications can be found in 

Matiur (2012), Ahmed et al. (2017) and, Matiur and Mollah (2018).  
 

3.3 Dimension Reduction 

In statistics, machine learning, and information theory, dimensionality reduction 

or dimension reduction is the process of reducing the number of random variables 

under consideration by obtaining a set of principal variables. It is essential to 

produce the inputs of some statistical approaches those are suffering from the 

high-dimensionality of the dataset. There are two types of dimension reduction 

techniques (i) feature selection and (ii) feature projection. Feature selection 

approaches try to find a subset of the original variables. There are three feature 
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selection strategies (i) filtering strategy (ii) the wrapper strategy (e.g. search 

guided by accuracy), and (iii) the embedded strategy (features are selected to add 

or be removed while building the model based on the prediction errors). Feature 

projection transforms the data in the high-dimensional space to a space of fewer 

dimensions. Principal component analysis (PCA), factor analysis (FA) and 

canonical correlation analysis (CCA) are considered as the most popular feature 

projection approaches for dimension reduction.  The estimation of the mean vector 

µ and covariance matrix V plays the key role in each of PCA, FA and CCA. 

However, traditional sample mean vector and covariance matrix (1-2) are 

sensitive to outlying observations though they are affine equivariant. There are 

some popular affine equivariant robust estimators like MCD and MVE for (𝜇, 𝑉), 

but their robustness performance gradually decreases if the number of variables p 

increases in the dataset. Mollah et al. (2010b) proposed robust PCA based on the 

minimum β-divergence estimators (�̂�𝛽,�̂�𝛽) of (𝜇, 𝑉) computed by equations (10-

12) which is more robust than the other existing robust estimators in the literature 

as discussed previously.  In general, the β-PCA aims to extract the most 

informative q-dimensional output vector 𝑦𝑗 = (𝑦𝑗1,𝑦𝑗2, … , 𝑦𝑗𝑞)/  from the input 

vector 𝑥𝑗 = (𝑥𝑗1,𝑥𝑗2, … , 𝑥𝑗𝑝,)
/ of dimension p ≥ q whose components are assumed 

to be linearly correlated to each other. This is achieved by learning the p × q 

orthogonal matrix Γ̂𝛽 = [ 𝛾1, �̂�2, … . 𝛾𝑞] which relates xj to yj by 

                                  𝑦𝑗 = Γ̂𝛽
/
(𝑥𝑗 − �̂�𝛽)                                                                 (26)  

such that components of yj are mutually uncorrelated satisfying the variance 

inequality property of principal components (Higuchi and Eguchi, 2004; Mollah et 

al. 2010a). The orthogonal matrix  Γ̂𝛽 is determined by Γ̂𝛽 = eigen (�̂�𝛽) such that 

Γ̂𝛽
/
�̂�𝛽Γ̂𝛽 = diag(�̂�1, �̂�2, … �̂�𝑞) satisfying the inequality �̂�1 > �̂�2 > ⋯ > �̂�𝑞 , where 

�̂�𝑖  is the variance of the ith principal component (PC). Mollah et al. (2010b) 

extended β-PCA for exploring the local PCA structures.  Similarly, Ahsan (2012) 

and Ahsan et al. (2012) robustify factor analyzers (FA) and, Singha (2013) and 

Singha et al. (2014) robustify canonical correlation analyzers (CCA) based on the 

minimum β-divergence estimators (�̂�𝛽,�̂�𝛽) of (𝜇, 𝑉) computed by equations (10-

12) for high-dimensional molecular OMICS data analysis from the robustness 

viewpoints 
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3.4 Blind Source Separation  

Preprocessing of data is necessary in some adaptive independent component 

analysis (ICA) algorithms for Blind Source Separation (BSS), because it reduces 

the complexity of the ICA problems [Hyv¨arinen et al., 2001; Cichocki and 

Amari, 2002]. For example, robust FastICA fixed-point algorithm [Hyv¨arinen et 

al., 2001] is a popular algorithm for BSS, however, it produces misleading results 

in presence of outliers due to the utilization of non-robust prewritten dataset. To 

overcome this problem, Mollah et al. (2007) robustify the prewhitening procedure 

based on the minimum β-divergence estimators (�̂�𝛽,�̂�𝛽) of (𝜇, 𝑉) computed by 

equations (10-12) as follows:  

Let us consider the linear ICA model for an observable random vector x of 

dimension p as 

                                               x =As                                                                 (27) 

where A ∈ Rm×m and s is an unobservable source vector whose components are 

assumed to be independent and non-Gaussian. A random vector z is said to be 

whiten or sphere if E(Z)=0 and E(ZZ
/
)=Ip (identity matrix).  In the β-prewhitening 

procedure, the prewhitten data vector zj is obtained from xj by the following 

equation 

                                  𝑧𝑗 = V̂𝛽
−1/2

(𝑥𝑗 − �̂�𝛽)                                                           (26)  

More discussion about β-prewhitening and its application to BSS can be found in 

[Mollah et al. 2007, 2009, 2010c].  

 

4. Conclusion 

In this paper we have illustrated that the minimum β-divergence estimators of 

multivariate Gaussian location and scatter parameters are highly robust against 

outliers. We have discussed how the minimum β-divergence estimators of those 

parameters playing key role when developing robust multivariate techniques 

including robust principal component analysis, factor analysis, canonical 

correlation analysis, independent component analysis, multiple regression 

analysis, cluster analysis and discriminant analysis. It also serves as a convenient 

tool for detection of multivariate outliers. The minimum β-divergence estimators 

of multivariate Gaussian location and scatter parameters are reviewed, along with 
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its main properties such as affine equivariance, breakdown value, and influence 

function. We discuss its computation and some applications in applied and 

methodological multivariate statistics. Finally we have provided a detailed 

reference list with applications and generalizations of the minimum β-divergence 

estimators in the theoretical and applied research.  

 

References 
  

[1] Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis. 

Wiley Interscience. 

[2] Agostinelli, C., Leung, A., Yohai, V., and Zamar, R. (2015). Robust estimation 

of multivariate location and scatter in the presence of cell-wise and case-

wise contamination, TEST. 24, 441-461. 

[3] Ahsan, M. A. (2012). Robustification of factor Analyzers and Its Application 

for Gene Expression Data Analysis. Unpublished M.Sc. Thesis, Dept. of 

Statistics, University of Rajshahi, Bangladesh.  

[4] Ahsan, M. A., Rahaman, M. M., Monir, M. M., Hossain, M. R. and Mollah, 

M. N. H. (2012).  Robustification of Factor Analyzers and Its Application 

for Microarray Gene Expression Data Analysis. Proceedings of the 

International Conference on Bioinformatics, Health, Agriculture and 

Environment - 2012, University of Rajshahi, Bangladesh, ISBN-978-984-

33-5876-9.  

[5] Ahmed, M. S., Shahjaman, M., Rana, M. M. and Mollah, M. N. H. (2017). 

Robustification of Naïve Bayes Classifier and Its Application for 

Microarray Gene Expression Data Analysis. BioMed Research 

International. Volume 2017, Article ID 3020627, 17 pages, 

https://doi.org/10.1155/2017/3020627. 

[6] Basu, A., Harris, I. R., Hjort, N. L. and Jones, M. C. (1998). Robust and 

efficient estimation by minimizing a density power divergence. 

Biometrika, 85, 549-559. 

[7] Badsha, M. B. (2010). Robustification of Complementary Hierarchical 

Clustering for Gene Expression Data Analysis.  Unpublished M.Sc. 

Thesis, Dept. of Statistics, University of Rajshahi, Bangladesh. 



 

 

 

 

 

 

 

 

84                     International Journal of Statisticsl Sciences, Vol. 16, 2018 

 

[8] Badsha, M. B., Jahan, N., Kurata, H. and Mollah, M. N. H. (2013). Robust 

Complementary Hierarchical Clustering for Gene Expression Data 

Analysis by β-divergence.  Journal of Bioscience and Bioengineering 

(JBB), Vol-116 (3), pp. 397-407. 

[9] Cichocki, A. and Amari, S. (2002). Adaptive Blind Signal and Image 

Processing, Wiley, New York. 

[10] Croux, C. and Haesbroeck, G. (1999). Influence function and efficiency of 

the Minimum Co-variance Determinant scatter matrix estimator. Journal of 

Multivariate Analysis, 71:161-190. 

[11] Donoho, D. L. and Huber, P. J. (1983). The notion of breakdown point. In a 

Festschrift for Ericion.   

[12] Eisen, M. B., Spellman, P. T., Brown,  P. O. and Botstein, D. (1998). Cluster 

analysis and display of genome-wide expression patterns, Proc. Natl. 

Acad. Sci. USA, 95, 14863-14868. 

[13] Hampel, F.R. Ronchetti, E.M. Rousseeuw, P.J. and Stahel, W.A. (1986). 

Robust Statistics: The Approach Based on Influence Functions. Wiley, 

New York. 

[14] Higuchi, I. and Eguchi, S. (2004). Robust principal component analysis with 

adaptive selection for tuning parameters. Journal of Machine Learning 

Research, 5, 453–471. 

[15] Hyv¨arinen, A., Karhunen, J. and Oja, E. (2001). Independent Component 

Analysis, Wiley, New York, 2001. 

[16] Johnson, R. A. and Wichern, D. W. (2007). Applied multivariate statistical 

analysis. Sixth edition, Prentice-Hall. 

[17] Hubert, M. and Debruyne, M. (2010). Minimum Covariance Determinant. 

Advanced Review. Vol.2,  John Wiley & Sons. Inc.   



 

 

 

 

 

 

 

 

Mollah and Bhattacharjee: Minimum β-Divergence Estimators …                              85 

 

 

[18] Kabir,  M. H. (2018). Development of Statistical Algorithm for Data Mining 

in Bioinformatics. Unpublished PhD Thesis, Dept. of Statistics, University 

of Rajshahi, Bangladesh. 

[19] Kabir, M. H. and Mollah, M. N. H. (2018).  A Semi-Supervised Robust 

Model based Clustering and Its Application for Gene Expression Data 

Analysis. International Conference on New Paradigms in Statistics for 

Scientific and Industrial Research, January 4-6, 2018. Kolkata, India. 

[20] Lopuha, H.P. and Rousseeuw, P.J. (1991). Breakdown points of an 

equivariant estimators of multivariate location and covariance matrices. 

The Annals of Statistics, 19:229-248. 

[21] Mollah,  M. N. H., Minami, M. and Eguchi, S. (2006). Exploring Latent 

Structure of Mixture ICA Models by the Minimum β-Divergence 

Method.   Neural Computation, Vol.18, pp.166-190.   

[22] Mollah, M. N. H., Minami, M. and Eguchi, S. (2007). Robust Prewhitening 

for ICA by Minimizing β-Divergence and its Application to Fast 

ICA.  Neural Processing Letters, Vol. 25,   pp. 91-110.   

[23] Mollah, M. M. H.,  Hossain, M. G. and Mollah, M. N. H. (2008a). Robust 

Estimation for Multivariate Normal Distribution.   Journal of Applied 

Statistical Science (JASS), Vol. 16,  pp. 377-386.  

[24] Mollah, M. N. H., Mari, P., Komori, O. and   Eguchi, S. (2009). Robust 

Hierarchical Clustering for Gene Expression Data Analysis.  

Communications of SIWN, Vol. 6, pp. 118-122.  

[25] Mollah, M. N. H., Sultana, N., Minami, M. and Eguchi, S. (2010a). Robust 

Extraction of Local Structures by the Minimum β-Divergence 

method., Neural Network,  Vol. 23, pp. 226-238.   

[26] Mollah, M. M. H., Hossain, M. G. and Mollah, M. N. H. (2010b). Robust 

Principal Component Analysis Based on Robust Estimation of 

Multivariate Normal Distribution.  International Journal of Statistical 

Science (IJSS), Vol.10, pp. 19-35. 

[27] Mollah, M. N. H. (2010c). Robust Image Processing by β-Prewhitening 

Based FastICA algorithm.  Int. Journal of Tomography and Statistics 

(IJTS), Vol. 13, pp. 126-136. 

[28] Mollah, M. H., Mollah, M. N. H. and Kishino, H. (2012). β-Empirical Bayes 

inference and model diagnosis of microarray data .  BMC Bioinformatics, 

13:135. 



 

 

 

 

 

 

 

 

86                     International Journal of Statisticsl Sciences, Vol. 16, 2018 

 

[29] Maronna, R.A. and Zamar, R.H. (2002). Robust estimates of location and 

dispersion for high dimensional data sets. Technometrics, 44:307-317. 

[30] Nowak, G. and Tibshirani, R. (2008). Complementary hierarchical clustering, 

Biostatistics, 9, 467-483.  

[31] Rahman, M. M. (2012). Robustification of Bayes Classifier and Its 

Application for Gene Expression Data Analysis. Unpublished M.Sc. 

Thesis, Dept. of Statistics, University of Rajshahi, Bangladesh.  

[32] Rahman, M. M. and Mollah, M. H. (2018). Robustification of Gaussian 

Bayes Classifier by the Minimum β-Divergence Method. Accepted for 

publication in the Journal of Classification. Springer.  

[33] Rousseeuw, P.J. (1985). Multivariate estimation with high breakdown point. 

In W. Grossmann, G. Pug, I. Vincze, and W. Wertz, editors, Mathematical 

Statistics and Applications, Vol. B, pages 283-297, Dordrecht, 1985. 

Reidel Publishing Company. 

[34] Rousseeuw, P.J. and Van Driessen, K. (1999). A fast algorithm for the 

Minimum Covariance Determinant estimator. Technometrics, 41:212-223. 

[35] Singha, A. C. (2013). Statistical Phylogenetic Modeling and Its Application 

for DNA and Protein Sequence Analysis. Unpublished M.Sc Thesis, Dept. 

of Statistics, University of Rajshahi, Bangladesh. 

[36] Singha, A. C., Ahmed, M. S., Rana, M. M., Ahsan, M. A. and Mollah, 

M.N.H. (2014). Robust Phylogenetic Canonical Correlation Analysis. 

International Conference on Applied Statistics (ICAS), 26-28, Dec., 2014, 

ISRT, University of Dhaka, Bangladesh. 

 
 


