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Abstract  

This article develops a hierarchical Bayesian model for comparing two groups using 

whole brain functional connectivity data. Significant disrupted connectivities are detected 

by controlling the false discovery rate. Discoveries identified by the hierarchical Bayesian 

model are further compared with those detected by the empirical Bayes approach, and a 

conformity of results is established. Methodological developments are illustrated with a 

large data set from the Autism Brain Imaging Data Exchange (ABIDE), which includes 

361 subjects from 8 medical centers. We observe significantly different functional 

connectivities involving the Primary Auditory, Visual and Motor Cortexes in the autistic 

group compared to the control group. Multiple hubs of disruptions are also found to 

inform investigators for possible targets for interventions or development of therapeutic 

interventions. A potential application of our discoveries is in early detection of subjects 

who are at high risk of developing neurological disorders.  
 

Keywords: Neuroconnectivity, Functional Magnetic Resonance Imaging, Bayesian 

Hierarchical Models, False Discovery Rate.   

 

1. Introduction 

The human brain is composed of neural populations that work synchronously via 

various forms of connections to perform cognitive tasks. A failure at any 

component in the human brain system results in improper function of tasks. A 

detailed understanding of brain disruptions in neurological conditions is 

fundamental to the development of treatments for these diseases. To this end, 

numerous efforts have been made to decipher the relationship between 

neurological conditions and changes in brain connectivity. For example, the 

Human Connectome Project (http://www.humanconnectomeproject.org/) 

represents the most ambitious effort to map the neural pathways that underlie the 

function of the human brain.  

http://www.humanconnectomeproject.org/)
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This effort will pave the way toward a better understanding of how brain 

connectivity is involved in the pathophysiology of aging and disease. Similarly, 

the 1000 Functional Connectome Project is the largest repository of fMRI data for 

studying autism. Autism is a neurodevelopmental disorder that is characterized by 

poor social communication abilities, repetitive behaviors, or restricted interests. 

This broad classification includes autistic disorder, Asperger syndrome, and 

pervasive developmental disorder not otherwise specified (PPD-NOS) according 

to DSM-IV [2]. As this is an etiologically and clinically diverse group of 

disorders, it is commonly referred to as the autism spectrum disorders (ASD). It is 

estimated that ASD strikes 1-2 per 1000 people [8], making it of the utmost 

importance for research to elucidate its etiology.  

Neural connectivity usually refers to a pattern of anatomical links (structural 

connectivity) and statistical dependencies (functional connectivity). Functional 

connectivity is defined as the temporal dependence of activities of anatomically 

separated regions of the brain [1, 9]. It may similarly be described as synchronized 

and correlated patterns of activity that can even occur between pairs of structurally 

unconnected regions. Functional magnetic resonance imaging or functional MRI 

(fMRI) is a neuroimaging procedure that measures brain activity by detecting 

associated changes in blood flow. fMRI has become a dominant neuroimaging 

technique; in fact, it played a critical role in establishing ASD as a neurological 

disorder. fMRI measures brain activity using blood oxygen-level dependent 

(BOLD) response, a function of changes in the amount of deoxyhemoglobin in the 

tissue. Functional connectivity is then characterized from fMRI data by similar 

activation patterns of anatomically separated regions, indicating functional 

communications, or links, between these regions. Due to its excellent contrast 

properties, spatial resolution, and temporal resolution, fMRI is ideally suited for 

autism research. Additionally, it is non-invasive and does not need radio-labeling, 

making it a relatively simple technique to administer to patients.  

Statistical analysis of functional connectivity data to study autism spectrum 

disorder needs to be given special attention, as multidimensional complexities, 

such as within subject variability, between subject heterogeneity and study site 

variations are present in such data. Detection of disrupted connectivities of autistic 

subjects compared to healthy controls is often one of the main goals of such 

studies. In whole brain studies, where thousands of links are measured, 

discovering true disruptions becomes challenging as false discoveries often derail 

the process. Controlling the number of false discoveries is a critically important 

step, as otherwise further research and effort is wasted on incorrect conclusions. 

Thus, appropriate modeling of such data together with the implementation of a 
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proper multiple testing procedure to control false discoveries is extremely 

important in search for true disruptions.  

In this article, we develop a hierarchical Bayesian model to analyze resting state 

functional neuroconnectivity data. Our primary goal is to develop and apply the 

proposed statistical methods to neuroconnectivity data for comparing subjects 

having neurological conditions (e.g., autism, psychiatric etc.) with healthy 

controls to identify disrupted connectivities for application of better therapeutic 

interventions. We also identify hubs of disrupted neuroconnectivities, which are 

critically important for classifying subjects falling in a high-risk category to 

prevent future catastrophes, such as suicide ideation or complete suicide. In search 

of disrupted connectivities, we aim to prevent false discoveries. The most 

common approach to controlling the type I error rate is inappropriate for multiple 

testing of correlated hypotheses in fMRI data. Thus, proper analysis requires an 

innovative approach to control the false discovery rate in this setting. Our 

proposed approach provides a second layer of confidence in diagnosing 

neurological disorders, as it based on functional connectivity measures which 

further can be correlated with neurobehavioral measures as opposed to 

neurobehavioral measures only.  

We organize the article as follows. In Section 2, we motivate our problem with a 

study related to autism spectrum disorders (ASD). In Section 3, we develop a 

Bayesian model, particularly suitable for our study design and apply a multiple 

testing procedure to control false discoveries. We perform a simulation study and 

show satisfactory performance of our proposed model in Section 4. We then apply 

our approach to the Autism Brain Imaging Data Exchange (ABIDE) for 

identifying disrupted links. The conclusion is presented in Section 5.  

 

2. Motivational Example: Autism Brain Imaging Data Exchange 

We illustrate our approach using fMRI measures from the Autism Brain Imaging 

Data Exchange, which is part of the 1000 Functional Connectome 

Project/International Neuroimaging Data-sharing Initiative (INDI) 

(http://fcon_1000.projects.nitrc.org/). This exchange is the largest repository of 

fMRI data for autism, consisting of 16 sites among medical centers around the 

globe. It consists of 1112 datasets of fMRI data and phenotypic information for 

539 autism patients and 573 typically developing controls. All datasets in ABIDE 

are fully anonymized to be consistent with HIPAA (Health Insurance Portability 

and Accountability) guidelines and 1000 Functional Connectomes Project / INDI 

protocols. Detailed information regarding sample size, subject characteristics 
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(e.g., age), diagnostic criteria, data acquisition, and site-specific protocols at each 

medical center can be found at: http://fcon_1000.projects.nitrc.org/indi/abide/. 

The data was preprocessed by the Connectome Computation System (CCS) 

pipeline, as described at http://preprocessed-connectomes-

project.org/abide/ccs.html.  

In this article, we use fMRI measurements from 8 participating sites. The number 

of subjects at each site is summarized in Table 1. Most of the sites have fewer 

than 60 subjects, except for NYU. In total, we have 361 subjects, which consists 

of 189 controls and 172 autistic subjects. We choose to work with the 84 

Brodmann Regions of the ABIDE datasets. A list of all regions with numbers is 

given in Table 2. With 84 regions of measurements, a total of (84 × 83)/2 = 3486 

links are involved. A 3486 × 3486 matrix of Fisher transformed Pearson 

correlation coefficients were obtained for each subject from the ROI time courses. 

This represents an association matrix of functional connectivity between all 

possible pairs of ROIs.  
 

Table 1. Number of Subjects at Each Site 
[ 

Site Control Autism Total 

Caltech 21 16 37 

NYU 42 35 77 

Olin 16 20 36 

Pitt 28 30 58 

SBL 15 15 30 

SDSU 22 14 36 

SJH 25 22 47 

Stanford 20 20 40 

Total 189 172 361 

3. Methods 

In this section, we discuss and develop statistical methodologies for detecting 

disrupted connectivities in group comparison studies.  
 

3.1 Hierarchical Bayesian Model 

Bayesian statistics has become extremely useful for data analysis, and is now 

considered a viable alternative to classical frequentist theory. The term 
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hierarchical Bayes was introduced by Good in 1965 [13]. In recent years, 

hierarchical Bayesian modeling has been very useful in modeling complex 

problems with multiple parameters. Assume observations 𝑦𝑖𝑗 are grouped into 𝑚 

clusters:  𝑦11, … , 𝑦1𝑛1
;   𝑦21, … , 𝑦2𝑛2

; … ; 𝑦𝑚1, … , 𝑦𝑚𝑛𝑚
 Hierarchical models 

assume 𝑦𝑖𝑗~𝑓(𝑦|𝜃𝑖), 𝑗 = 1, … , 𝑛𝑖 , 𝑖 = 1, … , 𝑚  and 𝜃1, … , 𝜃𝑚  are iid with 

distribution 𝜋(𝜃|𝜂). 

In many statistical applications, data are correlated or connected in a certain 

pattern. Hierarchical models allow the assessment of the within and between 

cluster effects. Furthermore, non-hierarchical models are usually not suitable for 

hierarchical data due to the difficulty in identifying the correct number of 

parameters.  

The implementation of hierarchical Bayesian modeling requires computational 

power. For illustration, suppose the study data has the following hierarchical 

structure:  
 

𝑌𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2), 
𝜇, 𝜎2~𝜋(𝜇, 𝜎2), 

 

Table 2. Regions Analyzed 
 

Region Number (Odd=Left, Even=Right) Region Description 

01,02 BA.1 Primary Somatosensory Cortex 

03,04 BA.10 Anterior Prefrontal Cortex 

05,06 BA.11 Orbitofrontal Cortex 

07,08 BA.13 Insular Cortex 

09,10 BA.17 Primary Visual Cortex 

11,12 BA.18 Secondary Visual Cortex 

13,14 BA.19 Associative Visual Cortex 

15,16 BA.2 Primary Somatosensory Cortex 

17,18 BA.20 Inferior Temporal Gyrus 

19,20 BA.21 Middle Temporal Gyrus 

21,22 BA.22 Superior Temporal Gyrus 

23,24 BA.23 Ventral Posterior Cingulate  Cortex 

25,26 BA.24 Ventral Anterior Cingulate Cortex 

27,28 BA.25 Subgenual cortex 

29,30 BA.27 Piriform Cortex 

31,32 BA.28 Posterior Entorhinal Cortex 
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33,34 BA.29 Retrosplenial Cingulate Cortex 

35,36 BA.3 Primary Somatosensory Cortex 

37,38 BA.30 Cingulate Cortex 

39,40 BA.31 Dorsal Posterior Cingulate Cortex 

41,42 BA.32 Dorsal Anterior Cingulate Cortex 

43,44 BA.33 Anterior Cingulate Cortex 

45,46 BA.34 Anterior Entorhinal Cortex 

47,48 BA.35 Perirhinal Cortex 

49,50 BA.36 Parahippocampal Cortex 

51,52 BA.37 Fusiform Gyrus 

53,54 BA.38 Temporopolar Area 

55,56 BA.39 Angular Gyrus 

57,58 BA.4 Primary Motor Cortex 

59,60 BA.40 Supramarginal Gyrus 

61,62 BA.41 Primary Auditory Cortex 

63,64 BA.42 Primary Auditory Cortex 

65,66 BA.43 Subcentral Area 

67,68 BA.44 IFC Pars Opercularis 

69,70 BA.45 IFC Pars Triangularis 

71,72 BA.46 Dorsolateral Prefrontal Cortex 

73,74 BA.47 Inferior Prefrontal Gyrus 

75,76 BA.5 Somatosensory Association Cortex 

77,78 BA.6 Premotor Cortex 

79,80 BA.7 Somatosensory Association Cortex 

81,82 BA.8 Dorsal Frontal Cortex 

83,84 BA.9 Dorsolateral Prefrontal Cortex 

 

where 𝜋(𝜇, 𝜎2) is the joint prior distribution of 𝜇 and 𝜎2. 

By Bayes theorem, the joint posterior distribution 𝜋(𝜇, 𝜎2|𝑌) of 𝜇 and 𝜎2 is given 

by:  

𝜋(𝜇, 𝜎2|𝑌) ∝ 𝐿(𝜇, 𝜎2) 𝜋(𝜇, 𝜎2) 

where 𝐿(𝜇, 𝜎2) is the likelihood of 𝜇 and 𝜎2. However, for statistical inference, 

the marginal posterior is needed. To derive the marginal posterior distribution of a 

parameter, one needs to integrate out all other parameters from the joint posterior 

distribution. In this example, the two marginal posterior distributions can be 

expressed as:  
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𝑓(𝜇|𝑌) = ∫ 𝜋(𝜇, 𝜎2|𝑌)𝑑𝜎2 

𝑓(𝜎2|𝑌) = ∫ 𝜋(𝜇, 𝜎2|𝑌)𝑑𝜇 

When there is a much larger number of second-level parameters to be estimated, 

this algorithm is not nearly as simple. This problem of high dimensional 

integration was generally a formidable analytic problem which had hindered the 

application of hierarchical Bayesian analysis until the late 1980s. See [5] for an 

excellent review.  

 

3.2 Implementation of Hierarchical Bayesian Model 

Implementation of a hierarchical Bayesian model was historically a challenging 

task due to high-dimensional integration. However, the advancement of 

computational tools in recent years makes it possible to sample from the marginal 

posterior distributions of high-dimensional parameters. Most of these techniques 

are based on Markov chain Monte Carlo, which we briefly describe below with an 

algorithm for implementation.  

3.2.1 Markov Chain Monte Carlo 

Markov chain Monte Carlo (MCMC) is a computational tool that can be used to 

sample from posterior distributions. It was first introduced by Metropolis in 1953 

[16]. Later developments include Hasting’s generalization of Metropolis’ 

algorithm [14] and the invention of the Gibbs sampler by [11]. Markov chain 

Monte Carlo was rediscovered by Bayesian scientists in the late 1980s. Over the 

years, MCMC has become popular in Bayesian computational statistics and has 

made significant contributions to the propagation of Bayesian theory. The central 

idea of MCMC is to construct a Markov chain whose stationary distribution is the 

target distribution. MCMC produces dependent samples as it is an iterative 

procedure. 

 

A Markov chain is a stochastic process 𝜃(1), 𝜃(2), … , 𝜃(𝑡), … such that 

𝑓(𝜃(𝑡+1)|𝜃(1), 𝜃(2), … , 𝜃(𝑡)) = 𝑓(𝜃(𝑡+1)|𝜃(𝑡)) ∀𝑡. 

The distribution of 𝜃  at time point 𝑡 + 1 given the values of all previous time 

points depends only the value at the immediate previous time point (i.e., 𝜃(𝑡)). In 

addition, 𝑓(𝜃(𝑡+1)|𝜃(𝑡)) is independent of time 𝑡. Lastly, under certain conditions, 
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the distribution of 𝜃(𝑡) converges to its equilibrium distribution. This convergence 

is independent of the choice of initial values 𝜃(0). 

The Markov chain needs to converge to the target posterior distribution before 

sampling is performed. In addition, it should be easy to sample from the 

conditional distribution 𝑓(𝜃(𝑡+1)|𝜃(𝑡)). Assuming the Markov chain satisfies the 

above-mentioned conditions, the MCMC algorithm can be summarized as 

follows:  

1. Choose an initial value 𝜃(0) for the Markov chain(s). 

2. Generate 𝑇 values (iterations) until the chain(s) reaches equilibrium.  

3. Evaluate convergence of the algorithm by examining convergence 

diagnostics. If the diagnostics fail, generate more observations. 

4. Remove the first 𝐵 observations (i.e., burn-in process). 

5. Use the remaining 𝑇 − 𝐵 values 𝜃(𝐵+1), … , 𝜃(𝑇) as posterior samples. 

6. Obtain the summary statistics of the posterior sample (e.g. mean, standard 

deviation, quantiles, correlations). Perform Bayesian inferences using 

these posterior samples. 

After posterior samples of 𝜃, 𝜃(1), … , 𝜃(𝑇), are obtained, statistical inferences can 

be made on any function of 𝜃, say 𝐺(𝜃). The algorithm is as follows (see [18]): 

1. Obtain a sample of 𝐺(𝜃) of size 𝑇 by plugging in𝜃(1), … , 𝜃(𝑇). 

2. Obtain summary statistics of 𝐺(𝜃) using traditional sample estimates. For 

instance, the posterior mean of 𝐺(𝜃) can be approximated 

by
1

𝑇
∑ 𝐺(𝜃(𝑡))𝑇

𝑡=1 . Similarly, one can derive other quantities such as the 

posterior standard deviation, median or quantiles of 𝐺(𝜃). 

 

3.2.2 Metropolis-Hasting Algorithm 

Since Metropolis first introduced the MCMC method, there have been several 

developments in expanding the original method. These include the Metropolis-

Hasting algorithm, Gibbs sampler, slice sampler, reversible jump MCMC and 

perfect sampling. Most of the later developments are more complicated than the 

original Metropolis algorithm and focus on specific problems. The main idea 

behind the Metropolis algorithm is a random walk that uses an 

acceptance/rejection rule to converge to the target distribution. The steps for 

drawing samples from the posterior distribution 𝑝(𝜃|𝑦) can be summarized as 

follows:  
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1. Identify a jumping density 𝐽𝑡(𝜃∗|𝜃𝑡−1). The jumping density must be 

symmetric, i.e.  𝐽𝑡(𝜃𝑎|𝜃𝑏) = 𝐽𝑡(𝜃𝑏|𝜃𝑎). 

2. Draw 𝜃∗ from 𝐽𝑡(𝜃∗|𝜃𝑡−1). 

3. Compute the ratio 𝑟 =
𝑝(𝜃∗|𝑦) 

𝑝(𝜃𝑡−1|𝑦)
. 

4. If 𝑟 ≥ 1, set 𝜃𝑡 to 𝜃∗. Otherwise set 𝜃𝑡 to 𝜃∗ with probability 𝑟 and 𝜃𝑡−1 

with probability 1 − 𝑟. 

Metropolis’ method was generalized to what is known as the Metropolis-Hasting 

algorithm [14]. The main improvements include (1) the jumping density does not 

need to be symmetric, and (2) the ratio r is replaced by  

𝑟 =

𝑝(𝜃∗|𝑦) 

𝐽(𝜃∗|𝜃𝑡−1)

𝑝(𝜃𝑡−1|𝑦) 

𝐽(𝜃𝑡−1|𝜃∗)

. 

3.2.3 Gibbs Sampler 

Gibbs sampler was developed in [11] as a special case of Metropolis-Hasting. 

Suppose 𝜃 consists of 𝑑 components, 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑑). Then, each iteration of 

Gibbs sampler consists of a series of 𝑑  steps. In step 𝑗  of iteration 𝑡 , Gibbs 

sampler utilizes the full conditional posterior distribution  

𝑝(𝜃𝑗|𝜃−𝑗
𝑡−1, 𝑦) 

to update 𝜃𝑗 , where 𝜃−𝑗
𝑡−1 represents all components of 𝜃 except for 𝜃𝑗: 

𝜃−𝑗
𝑡−1 = (𝜃1

𝑡, 𝜃1
𝑡 , … , 𝜃𝐽−1

𝑡 , 𝜃𝐽+1
𝑡 , … , 𝜃𝑑

𝑡 ). 

The algorithm of Gibbs sampler can be summarized as follows:  

1. Set initial values 𝜃(0). 
2. For 𝑡 = 1, … , 𝑇, repeat the following steps: 

a. Set 𝜃(𝑡) = 𝜃(𝑡−1). 
b. For 𝑗 = 1, … , 𝑑, update 𝜃𝑗  from 

𝜃𝑗~𝑝(𝜃1
𝑡, 𝜃1

𝑡, … , 𝜃𝐽−1
𝑡 , 𝜃𝐽+1

𝑡 , … , 𝜃𝑑
𝑡 , 𝑦). 

c. Set 𝜃(𝑡) = 𝜃 and save it as the generated sample at iteration 𝑡 + 1. 

Gibbs sampler has been very popular since it only requires sampling from 

univariate distributions. Many statistical packages such as R and SAS provide 

standard functions that can easily generate random numbers from univariate 

distributions. WinBUGS is a free software that generates random numbers from 

posterior distribution of parameters in Bayesian models. It was developed by 
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statisticians in the Medical Research Council Biostatistics Unit in University of 

Cambridge. The original version, which was developed on the UNIX platform, is 

called BUGS, or Bayesian inference Using Gibbs Sampler. As WinBUGS 

implements Gibbs sampler, it allows for sampling sequentially from each 

parameter’s full conditional distribution.  

 

4. Data Analysis Using Bayesian Hierarchical Model 
 

4.1 Model Specification 

The joint distribution of data and parameters in a hierarchical model can be 

expressed as  

𝑓(𝑦|𝜃1)𝜋1(𝜃1|𝜃2)𝜋2(𝜃2|𝜃3) … 𝜋𝑘(𝜃𝑘|𝜆) 

where 𝑓(𝑦|𝜃1), 𝜋1(𝜃1|𝜃2), …, 𝜋𝑘(𝜃𝑘|𝜆) specify the first, second, …, 𝑘𝑡ℎ level of 

the hierarchical model, respectively. The main interest is usually in the marginal 

posterior distribution of first level parameters, 𝑝(𝜃1|𝑦). This can be obtained by 

Gibbs sampling via WinBUGS after the hierarchical model is specified. To fit the 

Bayesian hierarchical model to our fMRI data, the first level of the model is the 

mixed-effects model described below:  

𝑌𝑖𝑗 = 𝛽0𝑖 × (1 − 𝐺𝑗) + 𝛽1𝑖 × 𝐺𝑗 + 𝛾𝑗 + 𝜀𝑖𝑗, 

where 𝑌𝑖𝑗  is the fMRI measurement for the 𝑖𝑡ℎ  link from the 𝑗𝑡ℎ  subject, 𝑖 =

1, … , 𝑚  and 𝑗 = 1, … , 𝑛 . In this study, there are 𝑚 = 3486  links. 𝐺𝑗 = 0  for 

control subjects while 𝐺𝑗 = 1 if the subject is from the autism group. 𝛾𝑗  is the 

random effect term for the 𝑗𝑡ℎ subject and 𝜀𝑖𝑗 is the error term. We assume that 

𝛾𝑗~𝑁(0, 𝜎𝛾
2) , where 𝛾1, … , 𝛾𝑛  are independent. Furthermore, 𝜀𝑖𝑗~𝑁(0, 𝜎0𝑖

2 )  for 

control group subjects, 𝜀𝑖𝑗~𝑁(0, 𝜎1𝑖
2 )  for autistic subjects, and all 𝜀𝑖𝑗  are 

independent. Moreover, 𝛾𝑗 is assumed to be independent of 𝜀𝑖𝑗. 

The fMRI measurement for the 𝑖𝑡ℎ link given the subject effect 𝛾 can be modeled 

as 

𝑌𝑖𝑗|𝛾𝑗~𝑁(𝛽0𝑖 + 𝛾𝑗 , 𝜎0𝑖
2  ) 

for subjects in the control group and  

𝑌𝑖𝑗|𝛾𝑗~𝑁(𝛽1𝑖 + 𝛾𝑗 , 𝜎1𝑖
2  ) 

for subjects in the autism group. We also assume that 
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𝛽𝑖 = [
𝛽0𝑖

𝛽1𝑖
] ~𝑁 ([

0
0

] , [
𝜎𝛽0𝑖

2 0

0 𝜎𝛽1𝑖

2 ]). 

Without any prior knowledge of model parameters, we assign the following values 

to the hyperparameters so that the priors contain almost no information:  

𝜎𝛽0𝑖

2 = 1000, 𝜎𝛽1𝑖

2 = 1000, 𝜎0𝑖
2 ∗= 1000, 𝜎1𝑖

2 ∗= 1000, 𝜎𝛾
2 = 1000. 

To detect disrupted links, we test the null hypothesis 𝐻0: 𝛽1𝑖 = 𝛽0𝑖  for 𝑖 =
1, … , 𝑚.  

 

4.2 Model Update and Diagnosis 

In this section, we describe how we update our models and provide diagnostics 

tests for convergence. The goal of WinBUGS analysis is to draw samples from 

corresponding posterior distributions. It is crucial to check the convergence of 

underlying results. However, since the posterior distribution has an unknown 

nonstandard form in most cases, convergence cannot be proved immediately. It is 

customary to run diagnostic tests to evaluate whether WinBUGS has converged to 

a stationary distribution. As a single test cannot guarantee convergence, it is 

recommended to run more than one test. For this purpose, we use a test based on 

the Brooks-Gelman-Rubin (bgr) test ([10], [4]) and Geweke test. The original 

Gelman-Rubin diagnostics test was a univariate statistic, referred to as the 

potential scale reduction factor, or PSRF. The idea behind the ANOVA-type 

diagnostic is that when chains converge to the target distribution, the between 

chain variation should become small relative to the within chain variation, 

yielding a PSRF close to 1.  

The PSRF was later extended to a new test that can simultaneously assess the 

convergence of multiple parameters in the form of a multivariate potential scale 

reduction factor (MPSRF). The relationship between PSRF and MPSRF can be 

expressed as  

max PSRF𝑖 ≤ MPSRF. 

A rule of thumb for non-convergence is 0.975 quantile of MPSF larger than 1.2. 

In Geweke’s test, the convergence of each chain can be examined by viewing the 

set of values simulated by MCMC as a time series [12]. The mean from earlier 

segments of the chain is compared to the mean in a later segment. A z-test is 

applied to check whether these two means are equal. If the hypothesis that the 

means at the beginning and the end of the MCMC output are equal is rejected, 

then the convergence of the chain cannot be assumed.  
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As WinBUGS relies on Gibbs sampling to generate random numbers from 

posterior distribution, it samples sequentially from each parameter’s full 

conditional distribution. Due to the sequential nature of the MCMC algorithm, 

WinBUGS produces correlated samples from the true joint posterior distribution. 

We monitor the correlation between neighboring draws to make sure that the 

algorithm is stopped at the right iteration.  

 

4.3 Analysis Results 

We preprocessed fMRI data in R and then fed it into WinBUGS using 

R2WinBUGS package. The mixed-effects model is fitted in WinBUGS. We chose 

to run 3 chains for 1100 iterations with a burn-in of the first 1000 iterations to 

obtain 300 sets of samples. Convergence is accessed using both the Gelman test 

and Geweke test.  

 

Table 3: Geweke Diagnostics Test 

Variable Name Geweke Value 

sigma1[3476] -4.045e-01 

sigma1[3477] -1.142e00 

sigma1[3478] 5.833e-01 

sigma1[3479] -4.976e01 

sigma1[3480] 8.869e-01 

sigma1[3481] 1.035e00 

sigma1[3482] 6.336e01 

sigma1[3483] -9.782e-02 

sigma1[3484] 7.883e-01 

sigma1[3485] -3.489e-01 

sigma1[3486] -3.351e-01 

 

Part of the output from the Geweke diagnostics test is listed in Table 3. The mean 

of the first 10% samples are compared with the last 50% samples in the Z score 

calculation. Since the Z statistic only applies to a single chain, the test is applied 

separately to each of the three chains. The z scores from all three chains are not 

significant at the 0.05 level, indicating no evidence of deviation from 



 

 

 

 

 

 

 

 

Jie, Rupnow, Bhaumik, Bhaumik and Sinha: Analysis of Functional …                      63 

 

 

convergence. The BGR diagnostic was also obtained via the CODA package. 

PSRF does not provide evidence of deviation from convergence as 0.975 quantiles 

are all less than 1.2. Moreover, MPSRF is equal to 1, which confirms that MCMC 

has converged. Convergence is further investigated graphically via trace-plots that 

display a time series plot of individual sampled for individual parameter in each 

chain. The trace-plots for several parameters in our model is presented in Figure 

1(a). All the values are within a zone without apparent periodicities, validating our 

assumption that convergence has been achieved. In addition, the density plots 

have a nice bell-shape, which is consistent with the posterior normal distribution.  

 

                 Figure 1: Diagnostics Plots (a) Trace Plot  (b) Density Plot 

Once convergence is confirmed via multiple tests and graphical tools, analysis 



 

 

 

 

 

 

 

 

64                     International Journal of Statisticsl Sciences, Vol. 16, 2018 

 

was performed in WinBUGS and the FDR approach implemented due to multiple-

testing. To control the false discovery rate in multiple testing, we used Benjamini 

Hochberg approach [3] with a false discovery rate of .30. Links with significant 

difference between autism and control subjects are presented in Table 4. 

Inspecting Table 4, we see that a total of 17 connectivities are found to be 

significant. Figure 2 is a brain network plot that depicts the 17 significant links. 

 

4.4 Hierarchical Bayesian Results vs Empirical Bayesian Results 

We further compared Hierarchical Bayesian (HB) results with those detected by 

Empirical Bayes (EB). The 12 links that were identified by EB were identified as 

significant by HB modeling, illustrating agreement in results. Furthermore, HB 

analysis found 6 extra links. This implies that EB is a good approximation to HB 

and, hence, EB can be recommended to use when computation is challenging. In 

fact, in this analysis, HB took around 100 hours to converge, while it only took 10 

hours to implement the EB approach. Another challenge for HB is the selection of 

a sensible prior that requires a thorough investigation. Although a flat or  
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Figure 2: Brain Network from Bayesian Analysis 

non-informative prior is usually recommended, in many cases a flat prior can be 

problematic. [15] and [17] indicated that in several instances non-informative 

priors can have undue impact on the posterior distributions.  

As pointed out by [6], convergence of MCMC can be very difficult to diagnose as 

most of the usual diagnostic tools have drawbacks [7]. Moreover, with increasing 

computation power, WinBUGS takes care of hierarchical Bayesian model 

implementation in the background with high efficiency. As it is becoming easy to 

fit a complicated hierarchical Bayesian model with WinBUGS, statisticians tend 

to fit a hierarchical Bayesian model larger than the data can readily support. Given 

the pros and cons of EB and HB, the modeling choice depends on problem at 

hand. Fortunately, EB and HB lead to similar results in this analysis, ensuring the 

validity of the list of links that are significantly different in autism as compared 

with control.  
 

4.5 Network of Analysis of Disrupted Connectivities 

The Primary Auditory, Visual and Motor Cortexes are a few to name that have 

significantly disrupted functional connectivities in the autism group compared to 

the control group. Using these disrupted connectivities, we constructed a network 
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analysis presented in Figure 2. Figure 2 reveals that Broadmann region Left 

Primary Auditory Cortex (61) of the ASD has disruptions with a total of six other 

Broadmann regions: the Right Primary Auditory Cortex (62), Right Subcentral 

Area (66), Right Dorsolateral Prefrontal Cortex (84), Right IFC Pars Triangularis 

(70), Right IFC Pars Opercularis (68), and Right Superior Temporal Gyrus (22). 

In addition, the Right Subcentral Area (66) and Insular Cortex (8) each have three 

disruptions. Some other isolated disrupted connectivities (on the top and top right 

side) are shown in this figure. A plausible interpretation of this network is that the 

disruption between the Primary Auditory Cortex and Subcentral Area may 

produce deflated verbal responses in the autism group due to poor performance of 

the Auditory Cortex. Similarly, disruptions between Primary Auditory Cortex and 

Right Dorsolateral Prefrontal Cortex (DLPFC) may have impact on the A-not B 

task, delayed response task and object retrieval task; in other words, autistic 

subjects may have difficulty holding onto information. Subjects with disrupted 

DLPFC may have problems identifying an object they have previously seen.  
 

Table 4: Significant Links Detected by Hierarchical Bayesian Analysis 

 

Number Link Mean Difference P-Value 

1 61-66 0.12401059 3.66E-05 

2 61-62 0.11482648 6.85E-05 

3 08-01 0.09312393 6.87E-05 

4 14-54 0.08030308 0.000151718 

5 61-68 0.10010339 0.000283524 

6 14-27 0.06500111 0.000316542 

7 07-66 0.0973133 0.000327247 

8 57-82 -0.08345572 0.000409923 

9 08-74 -0.08531813 0.000740115 

10 20-38 0.0666724 0.000944472 

11 25-77 0.07971842 0.001273403 

12 61-70 0.07243045 0.00130313 

13 61-84 0.08507215 0.001332772 

14 22-61 0.08128412 0.001361554 

15 65-66 0.10029997 0.001408855 

16 07-08 0.12526509 0.00146067 

17 22-61 0 .08128412 0.001479168 
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5. Conclusion 

Detection of disrupted connectivities in neuroimaging studies is an important 

problem for better targeting therapeutic interventions. The motivation for 

developing a hierarchical Bayesian model in this context is to incorporate within 

subject correlations in the analysis, as eluding of such correlations may produce 

biased results in the decision-making process. Several computational challenges 

are addressed while implementing the hierarchical Bayesian model. We have 

detected several disrupted connectivities after controlling the false discovery rate 

for reliability and robustness. Disrupted connectivities identified in autistic 

patients by the hierarchical Bayesian model match were also detected by the 

empirical Bayesian approach. As the network analysis shows that the Primary 

Auditory Cortex that has disrupted connectivities with several other regions, this 

may be the hub of disruption. Furthermore, the Insular cortex may be considered 

as a subhub of disruptions. These centers of disruptions may be used as target for 

applications of neurobehavioral interventions. The current analysis uses only 

resting state functional connectivity data. Results of structural connectivity (e.g. 

DTI) can be correlated with these findings for support of our understanding of 

how regions work together in the presence of strong or weak structural 

connections, referred to as effective connectivity.  
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