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Abstract 
 

The complexity of products has been increasing with technological advances. As a result, 

a product may fail in different ways or causes, which are commonly known as failure 

modes. Competing risk model is appropriate for modeling component failures with more 

than one failure modes. In this paper the competing risk model is applied for analysing 

product reliability data with multiple failure modes. Maximum likelihood estimation 

method is used to estimate the parameters and various characteristics of the model and to 

assess and predict the reliability of the product. 
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1. Introduction 

According to (ISO 8402, 1994), a product can be tangible (e.g. assemblies or 

processed materials) or intangible (e.g., knowledge or concepts), or a combination 

thereof. A product can be either intended (e.g., offering to customers) or 

unintended (e.g., pollutant or unwanted effects). This paper considers tangible 

products, specifically manufactured goods.   

The complexity of products has been increasing with technological advances. As a 

result, a product must be viewed as a system consisting of many elements and 

capable of decomposition into a hierarchy of levels, with the system at the top 

level and parts at the lowest level. There are many ways of describing this 

hierarchy. One such is the nine-level description shown in Table 1, based on a 

hierarchy given in Blischke and Murthy (2000) and Blischke, Karim and Murthy 

(2011). 
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Table 1: Multilevel decomposition of a product 

Level Characterization 

0 System 

1 Sub-system 

3 Assembly 

4 Sub-assembly 

5 Module 

6 Sub-module 

7 Component 

8 Part 

 

The number of levels needed to describe a product from the system level down to 

the part level depends on the complexity of the product. Many units, systems, 

subsystems, or components have more than one cause of failure. For example, (i) 

A capacitor can fail open or as a short, (ii) Any of many solder joints in a circuit 

board can fail, (iii) A semi conductor device can fail at a junction or at a lead, (iv) 

A device can fail because a manufacturing defect (infant mortality) or because of 

mechanical wear out, (v) For an automobile tire, tread can wear out or the tire may 

suffer a puncture.The Competing risk model is appropriate for modeling 

component failures with more than one mode of failure. A failure mode is a 

description of a fault. It is sometimes referred to as fault mode. Failure modes are 

identified by studying the (performance) function. Assume a (replaceable) 

component or unit has K different ways it can fail. These are called failure modes 

and underlying each failure mode is a failure mechanism. Each mode is like a 

component in a series-system.  

Improving reliability of product is an important part of the larger overall picture of 

improving product quality. Therefore, in recent years many manufacturers have 

collected and analyzed field failure data to enhance the quality and reliability of 

their products and to improve customer satisfaction. This paper applies the 

competing risk model to analyze product failure data and to assess and predict the 

reliability of the product. 

The remainder of the article is organized as follows: Section 2 describes 

competing risk model formulation. Section 3 applies the competing risk model for 
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analyzing a set of product failure data. Section 4 concludes the paper with 

additional implementation issues for further research. 

 

2. Competing risk model formulation 

The cumulative density function (cdf) of the lifetime variable T of a general K-

fold competing risk model is given by  

1

( ) ( ; ) 1 [1 ( ; )]
K

k k

k

F t F t F t 


       (1) 

where ( ) ( ; )k k kF t F t   are the cdf’s of the K sub-populations with parameters

,1k k K   . Here { ,1 }k k K    and we assume that 2.K   

This is called a “competing risk model” because it is applicable when an item 

(component or module) may fail by any one of K failure modes, i.e., it can fail due 

to any one of the K mutually exclusive causes in a set 1 2{ , , , }KC C C  (Blischke, et 

al., 2011). The competing risk model has also been called the compound model, 

series system model, and multi-risk model in the reliability literature. Let kT be a 

positive-valued continuous random variable denoting the time to failure if the item 

is exposed only to cause ,1kC k K  . If the item is exposed to all K causes at the 

same time and the failure causes do not affect the probability of failure by any 

other mode, then the time to failure is the minimum of these K lifetimes, i.e., 

1 2min{ , , , }KT T T T , which is also positive-valued, continuous random variable. 

Let ( )R t , ( )h t , and ( )H t denote the reliability, hazard, and cumulative hazard 

functions associated with ( )F t , respectively, and let ( )kR t , ( )kh t , and ( )kH t be the 

reliability function, hazard function and cumulative hazard function associated 

with the cdf of the k
th

 failure mode, ( )kF t , respectively. It can be easily shown that  
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      (4) 

Note that for independent failure modes, the reliability function for the item is the 

product of the reliability functions for individual failure modes (2) and the hazard 

function for the item is the sum of the hazard functions (4). The density function 

of T is given by  

1 1

( ) [1 ( )] ( ), 0
KK

j k

k j
j k

f t F t f t t
 



 
 

   
 
 

     (5) 

which may be rewritten as 

1

( )
( ) ( ) , 0

( )

K
k

k k

f t
f t R t t

R t

   
   

   
 .   (6) 

Suppose that a component has K failure modes and that the failure modes are 

statistically independent. We look first at the general case in which the failure 

modes of some of the failed items are known and those of the remaining are 

unknown. In addition, we assume that it is not possible to determine the failure 

modes (or causes of failure) for the censored (non-failed) items.  

Two special cases of interest (Blischke, et al., 2011) are as follows:  

Case (i):  The failure modes are known for all failed items. 

Case (ii):  The failure modes are unknown for all failed items. 

 

Let 1n be the number of failed units and 2n the number of censored units. For the 

failed units, the post-mortem outcome is uncertain, that is, the failure modes for 

some units may not be known. Out of the 1n failed items, let 1kn denote the number 

of items with failure mode ,1k k K  , and 10 1 11

K

kk
n n n


  the number of 

failures for which there is no information regarding the failure mode. Let kjt denote 

the lifetime of the j
th

 item failing from failure mode k, and it the i
th

 censoring time.  

Note: For Case (i), 10 0n  , and for Case (ii) 10 1n n .  

For the general case, 1kn units out of n failed due to failure mode k, with failure 

times
11 2{ , , , }

kk k knt t t , and there are 10n units with failure times
101 2{ , , , }nt t t   for 
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which there is no information regarding the failure mode. In addition, there are

2 1 101

K

kk
n n n n


   censored units, with censoring times

21 2{ , , , }nt t t . 

Thelikelihood function in the general case is given by  

1 10 2

1 1 1 1 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( )
kn n nK K K K K

k kj l kj k j l j k i

k j l k j l i k
l k l k

L f t R t f t R t R t
       

 

   
      
   
      

       . (7) 

The MLEs of the parameters are obtained by maximizing the likelihood function 

(7). For most distributions the ML estimation method requires numerical 

maximization because of the lack of closed form solutions for the estimators. 

The results for the two special cases are as follows: 

Case (i):  The expression for the likelihood function is given by (7) with the 

second term equal to unity, so that  
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1

1 1 1 1 1
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Case (ii):  The expression for the likelihood function is given by (7) with the first 

term of equal to unity,  
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The cause-specific (or failure mode-specific) hazard function for cause k can be 

written as 

 
0

( )Pr( , | )
( ) lim

( )

k
k

t

f tt T t t C k T t
h t

t R t 

     
 


,  (10) 

where ( )kf t is the cause-specific pdf at time t that represents the unconditional 

probability of failure of an unit at time t from cause k, and ( )R t is the overall 

reliability function representing the probability of surviving from all causes up to 

time t. Relationship (10) implies that  

 ( ) ( ) ( )k kf t h t R t .    (11) 
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Using (11) and (2), we can rewrite the likelihood functions (8) and (9), 

respectively as 

 
1 2
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and 
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 
   

 
   .  (13) 

The MLEs of the parameters of the models are obtained by maximizing (8) or (12) 

for Case (i) and (9) or (13) for Case (ii). More details on the formulations and 

applications of competing risk models can be found in Murthy, et al. (2004) and 

Blischke, et al. (2011). 

3. Examples  

This section describes the following two examples. 

3.1 Exponential distribution 

Suppose that K = 2, and the lifetimes of failure modes 1 and 2 independently 

follow exponential distributions with parameters 1  and 2 , respectively. Time to 

failure is modeled by (1). We consider Case (i). The data consist of n units, with 

11n units failing due to failure mode 1 with failure times
1111 12 1{ , , , }nt t t , 12n units 

failing due to failure mode 2 with failure times 
1221 22 2{ , , , }nt t t , and 

2 11 12n n n n    units censored, with censoring times 
21 2{ , , , }nt t t .  

In this case, from (2), we have ( )R t = 1 2( ) ( )R t R t =  1 2exp ( )t   and using this 

in (12), the log-likelihood function becomes 

11 12 2

11 1 1 2 1 12 2 1 2 2 1 2

1 1 1

log log( ) ( ) log( ) ( ) ( )
n n n

j j i

j j i

L n t n t t       
  

          (14) 

From this, the ML estimators of 1  and 2  are found to be  

 
1 2 2

1

1 21 1 1

ˆ , 1,2
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i n n n
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t t t

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   

  (15) 

It follows from (2) that the maximum likelihood estimate of the reliability 

function of the component is 
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  1 2
ˆ ˆˆ( ) exp ( ) , 0R t t t       (16) 

We consider an electronic component for which lifetimes follow an exponential 

distribution. The component exhibits a new mode of failure due to mounting 

problems. If incorrectly mounted, it can fail earlier, and this is also modeled by an 

exponential distribution. The parameters of the exponential distributions for 

failure modes 1 and 2 are 1 = 0.0006 and 2 = 0.0004 per day. From (16), the 

maximum likelihood estimate of the reliability function of the component is ˆ ( )R t = 

exp(-(0.0006+0.0004)t) = exp(-0.001t),t ≥ 0. 

Figure 1 displays a comparison of the estimated reliability functions for failure 

mode 1, failure mode 2 and combined failure modes 1 and 2 for 0 ≤ t ≤ 10000 

days.  

 

Figure 1: Comparison of ML estimates of reliability functions for competing risk 

model 

This figure can be used to assess reliability of the component for given days. For 

example, the figure indicates the reliabilities of the component at age 2000 days 

are 0.30 for failure mode 1, 0.45 for failure mode 2 and 0.14 for the combined 

failure modes. Based on (16), the estimated MTTF of the component is found to 

be 
0

ˆˆ ( )R t dt


   = 1/(
1 2
ˆ ˆ  ) = 1000 days. More details on this example is given 

in Blischke, et al. (2011). 
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3.2. Example with Device-G data  

Failure times and running times for a sample of devices from a field tracking 

study of a larger system are given in Meeker and Escobar (1998). 30 units were 

installed in typical service environments. Cause of failure information was 

determined for each unit that failed (lifetime in thousand cycles of use). Mode S 

failures were caused by failures on an electronic component due to electrical surge. 

These failures predominated early in life. Mode W failures, caused by normal 

product wear, began to appear after 100 thousand cycles of use. The purposes of 

the analyses are: 

• Analyze the failure modes separately to investigate the effects of failure 

modes. 

• How to improve product reliability – if one failure mode can be eliminated. 

• Compare lifetime (with respect to the MLEs of parameters, MTTF, B10 

life, median life, etc.) of the product with failure modes (competing risk 

model) and ignoring failure mode information. 

When the failure modes S and W act independently, one can: 

• Analyze the mode S failures only: In this case mode W failures are treated 

as right censored observations. This is the estimate of the failure-time 

distribution if mode W could be completely eliminated. 

• Analysis of the mode W failures only: In this case mode S failures are 

treated as right censored observations. This is the estimate of the failure-

time distribution if mode S could be completely eliminated. 

• A combined analysis use the competing risk model assuming 

independence between mode S and mode W. 

Out of 30 units, there are 8 censored units at censoring time 300 kilocycles. A 

preliminary analysis of failure modes are given in Table 2. It is an examination of 

failure mode frequency or relative frequency data to determine the most important 

failure modes that contribute to quality problems and to which quality 

improvement efforts should be directed.  

 

Table 2: Frequencies and average lifetimes for failure modes S and W 

Failure 

Mode 
Frequency 

Average Life 

(Failure only) 

S 15 86.1 

W 7  231.3 

 

Table 2 indicates that failure mode S has considerably higher frequency and lower 

average lifetime (based on failure data only). Therefore, we may conclude that 
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efforts should be concentrated on failure mode S to eliminate it or to reduce the 

risks associated with this failure mode. Figure 2 represents the Weibull probability 

plots for individual failure modes S and W with the MLEs of shape and scale 

parameters. This figure suggests that the Weibull distribution provides a good fit 

to both failure modes. 

 

Figure 2: The Weibull probability plots for individual failure modes S and W 

 

The maximum likelihood estimates of Weibull parameters with MTTFs for failure 

modes S and W are displayed in Table 3 and Table 4, respectively.  

Table 3: Maximum likelihood estimates of Weibull parameters for failure mode S 

Parameters 

and MTTF 
Estimate 

Standard 

Error 

95.0% Normal CI 

Lower Upper 

Shape 0.670993 0.157777 0.423221 1.06382 

Scale 449.469 191.944 194.625 1038.01 

Mean(MTTF) 593.462 342.422 191.539 1838.77 
 

Table 4: Maximum likelihood estimates of Weibull parameters  

for failure mode W 

Parameters 

and MTTF 
Estimate 

Standard 

Error 

95.0% Normal CI 

Lower Upper 

Shape 4.33728 1.45059 2.25183 8.35411 

Scale 340.384 36.139 276.437 419.124 

Mean(MTTF) 309.963 29.8906 256.582 374.45 
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Tables 3 and 4 indicate that for the failure mode W, the MLEs of shape parameter 

is much larger and the MTTF is smaller than that of the failure mode S. The 

estimates of MTTFs of Tables 3 and 4 suggest a contradiction to the conclusion 

taken based on the conditional average lifetimes given in Table 2 and thus it 

requires more investigation.   
 

Figure 3 represents the Weibull probability plots for individual failure modes in 

the same scale.  It suggests that the mode S failures predominated early in life 

whereas the mode W failures caused by normal product wear and began to appear 

after 100 thousand cycles of use. 

 

Figure 3: Weibull probability plots for individual failure modes in the same 

scale 

Figure 4 shows the Weibull probability plot for competing risk model. This figure 

diverges rapidly after 200 thousand cycles.  

 

Figure 4: Weibull probability plot for competing risk model 
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The Weibull probability plot (ignoring failure mode information) is shown in 

Figure 5. Weibull analysis ignoring the failure mode information (Figure 5) shows 

evidence of a change in the slope of the plotted points, indicating a gradual shift 

from one failure mode to another. 

 

Figure 5: Weibull probability plot (ignoring failure mode information) 

Maximum likelihood estimates of percentiles for both competing risk model and 

ignoring failure mode information are given in Table 5. From Table 5, we may 

conclude that, 10% of the total components fail at 15.71 kilocyclesunder 

competing risk model and at 21.4kilocycles under ignoring failure mode 

information. 50% of the total components fail at 203.06 kilocycles for competing 

risk model and at 163.35kilocycles for without failure mode information. Hence 

we may say thatignoring failure mode information over estimates the B10 life and 

B90 life and under estimates median life compared with the competing risk 

model. More on the analysis of this data set can be found in Meeker and Escobar 

(1998). 

Table 5: MLEs of percentiles for competing risk model and ignoring failure 

mode information 

Percentile 
Competing Risk Model Ignoring Mode Information 

Estimate 95% L-CI 95% U-CI Estimate 95% L-CI 95% U-CI 

5 5.37 0.85 33.78 9.84 2.81 34.44 

10 15.71 3.86 63.63 21.4 7.97 57.43 

50 203.06 124.25 273.72 163.35 102.47 260.4 

90 369.4 280.7 455.89 596.63 334.03 1065.67 
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4. Conclusion 

 The failure mode-wise frequencies and conditional mean lifetimes can be 

misleading to determine the most important failure modes that contribute 

to quality problems and to which quality improvement efforts should be 

directed.  

 The failure mode or failure cause wise model with competing risk is better 

than combined model for assessing and predicting reliability of the product. 

 This article analysed the failure data based on Case (i), where the failure 

modes are known for all failed items. If, the failure modes are unknown 

for all failed items, application of the likelihood derived under Case (ii) 

would be relevant. However, it requires a complicated numerical 

maximization technique. The Expectation-Maximization (EM) algorithm 

might be applied in Case (ii). Further investigation on that case would be 

useful.  
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