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Abstract

Differentially expressed (DE) gene identification from microarray datasets is a
challenging statistical problem due to the small sample sizes with a large number of
transcripts surveyed. To decrease the dimensionality of gene transcripts, there are
numerous statistical methods. Nevertheless, in presence of an irregular pattern of
expressions or contaminated transcripts, most of them produce misrepresentative results.
Few robust statistical algorithms existed for the identification of DE genes. Most
approaches are not so appropriate for the detection of multi-class DE genes. In this study,
we robustify the likelihood ratio test for revealing DE genes. Real dataset of gene
expression and simulation analyses show that our method improves the performance over
the Bayesian and as well as classical approaches.
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1. Introduction

Differentially expressed (DE) genes analysis from microarray data is a
challenging statistical problem due to the small sample of sizes with large number
of transcripts surveyed. Reduce the dimensionality of transcripts from microarray
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dataset is an important statistical problem. A straightforward approach is to
identify of differentially expressed (DE) genes under the £ > 2 groups. With the
combine the genotypes of molecular markers, we may get useful information on
the regulatory network for DE identification [7]. There are two types of statistical
inferences in the literature for identification of DE genes (i) classical parametric
(likelihood ratio, F-test, test t-test, and so on) and non-parametric [2] measures,
and (2) empirical Bayes (EB) approaches [4, 5, 6, 7] and non-parametric [2, 4]
procedures. Usually, classical techniques examine the DE genes using the levels
of significance i.e. based on p-values by permutation distribution of their test
statistic. In contrast to classical approach, EB measures the posterior probability
of differential expressions. Though, the above mentioned approaches except
BRIDGE [5] are not robust against outliers. Most of the existing microarray
dataset, the assumption of normality does not follow [6]. Due to the gene
expression dataset are contaminated by outliers. To solve this issues, in this study,
a robust likelihood ratio test (LRT) approach based on the MCD estimator was
proposed that an extension of classical LRT approach to detect DE genes [12].

2. Examination the equality of several means by Likelihood ratio
test

Let X1, Xja,...,Xjnj be a random samples of size n;from the j" normal population (j
=1, 2, ..., k). Assume that the j"" population has mean W and variance O'jz. Further
assume that k random samples are independent. Assuming o7 = o5 = -+ = g =
a?(unknown), we want to test the following statistical hypothesis :

Ho: M1= Mo=...= = W (say) against Hj: Hois not true.
Under Hj, the likelihood function is as follows

L, = L(8, ] X) :(2”‘72)geXp[_&izZi(Xn—ﬂj)ﬂa 1)

where 01=(My, Ha,... peo’) and n = ¥¥_; n;.

Under Hyg, the likelihood function is as follows
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where 0p=(p1,6°) and n = Zﬁlnj.

Then the likelihood ratio test (LRT) criterion for testing Ho against H; can be
written as,

X..
| ©)

where §, = (i1,62) and 6, = (i, i ,....kk, 6°) are themaximumlikelihood
estimates (MLE) of 6, =(u,o) and 6, = (w4, 1, ..., 14, ), respectively.

Then »* = -2log4 follows approximately chi-square distribution with [(k+1) -1] = k
degrees of freedom and the approximation is usually good, even for small sample
sizes. So, LRT procedure computes y* = -2log/i for testing Ho against H; and
rejects the Ho if ¥ is larger than a Chi-Square percentile with k degrees of
freedom, where the percentile corresponds to the confidence level chosen by the
analyst. However, the standard LRT criterion as defined in (3) is very much
sensitive to outliers. So, in presence of outliers, it produces misleading results.
Therefore, we would like to robustify the classical LRT criterion as discussed
bellow.

2.1. Robustification of LRT

To robustify the classical LRT criterion (3), let us rewrite it as follows

-n/2
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s :nizjxji , themean of jth groupdata (j=1,2, ..k)

j i1

5-j2 = nizj"(xji — I )2 the varianceof jth groupdata

=

k n;
7 zlzz X;; , thegrand mean
n

=1 =1

- 1S N .

&2 = HZZ(XH — 4f, thegrand variance
j=1 -1

n:n1+n2+ - +nk

Itis obvious that zz;, 67, i1, 6° (j=12,..k) as defined in equation (4) are very

much sensitive to outliers. So our proposal is to use any robust estimators like
minimum fB-divergence estimators [11] or MCD estimators [13]of

K5, 6]-2, u and o?, (j=12,..,k) for robust estimation of the LRT criterion (})

and compute p-value for testing Ho against H; assuming -2log.Z as an approximate
- distribution and also we can use permutation techniques for computing the p-
values.

3. Simulation Results

To investigate the performance of the proposed method in a comparison of some
popular methods t-test, SAM, GaGa, EBarrays-LNN and BRIDGE [5, 6, 14, 15]
for detection of DE (important) genes, we generate gene expression profiles for
15000 genes such that 2000 genes are differentially expressed (DE) between two
groups A and B, and the rest 13000 genes are equally expressed (EE) between
this two groups. For each gene, we generate n;=40 expressions from group A
with density function N(py,6%) and n,=50 expressions from group B with density
function N(u,,6%). For generating DE genes, we use pi= 2, Ho=-2 and o°=1. For
generating EE genes, we use p1=p,=p =0 and ¢°=1.

Then we apply 6 methods namely t-test, SAM, GaGa, EBarrays-LNN and
BRIDGE including the proposed one to detect DE and EE genes from the whole
gene profiles. If a DE gene is detected as DE gene, it is called true positive (TP)
and if a DE gene is detected as EE gene, then it is called false negative (FN). On
the other hand, if an EE gene is detected as EE gene, then it is called True
negative (TN) and if an EE gene is detected as DE gene, then it is called false
positive (FP).
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Figure 1: (a-c) Receiver operating characteristic (ROC) curves to investigate the
performance of the proposed method in a comparison of t-test, SAM, GaGa, EBarrays
and Bridge for identification of differentially expressed genes in presence of 0% , 30%

and 60% contaminated genes, respectively.

An ROC curve represents the curve between TP rate (sensitivity) against the FP
rate (1-specificity). ROC curves in figure-1 (a-c) represent the performance of t-
test (blue line), SAM (gray line), GaGa (yellow line), the classical EBarrays-LNN
(violet line), Bridge (black line) and the proposed method (red line) in presence of
0% , 30% and 60% contaminated genes, respectively. From these ROC curves, it
is seen that all 6 methods show almost same performance in absence of outliers
(0%), however, in presence of 30% and 60% contaminated genes, the proposed
method shows better performance than other 5 methods though BRIDGE is
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robust. Table 1 shows the area under the ROC curve (AUC) and partial area under
the ROC curve (pAUC; at FPR< 0.2). It is seen that the values of both AUC and
pAUC for t-test, SAM, GaGa, EBarrays-LNN and Bridge are not so stable in
presence of 0% , 30% and 60% contaminated genes, respectively, while with
regards to the proposed approach, both AUC and pAUC remain similar for each
case. Thus simulation results shows that the proposed method improves the
performance over the t-test, SAM, GaGa, EBarrays-LNN and Bridge approaches,
otherwise, it keeps almost equal performance.

To investigate the performance of the proposed methods comparison with t-test,
Sam, GaGa, EBarrays-LNN, BRIDGE, when FPR<0.2 then calculated area under
the ROC curve(AUC) and partial under the ROC curve area following results in
case of moderate size(n;=40, n,=50) as shown in Table 1. In case our proposed
method better performance than Bridge and other existing method see for values
of AUC and pAUC.

Table 1: The calculated area under the ROC curve (AUC) and pAUC (with FPR<0.2)
calculated by t-test, SAM and empirical Bayes approaches (GaGa, EBarrays-LNN,
BRIDGE) and the proposed approaches average over the 60 simulated datasets: for large
sample cases

Method T-test SAM GaGa EBarrays- | BRIDGE | Proposed
LNN
In Absence of Contaminated Genes
AUC 0.9768 0.9764 0.9769 0.9732 0.9785 0.9784
(0.0027) (0.0029) (0.0027) (0.0021) (0.0025) | (0.0026)
pAUC 0.1861 0.1856 0.1842 0.1851 0.1857 0.1860

(0.0015) | (0.0015) | (0.0015) | (0.0019) | (0.0014) | (0.0014)

In Presence of 30% Contaminated Genes

AUC 0.9219 0.92332 0.9122 0.9022 0.9527 | 0.9725
(0.0034) (0.0034 | (0.0037) | (0.0037) | (0.0016) | (0.0014)
pAUC | 0.1536 0.1573 0.1476 0.1565 0.1852 | 0.1862

(0.0021) | (0.0022) | (0.0025) | (0.0026) | (0.0012) | (0.0011)

In Presence of 60% Contaminated Genes

AUC 0.9100 0.91425 0.9078 0.8902 0.9327 | 0.9642
(0.0049) | (0.0041 | (0.0047) | (0.0041) | (0.0023) | (0.0018)
pAUC | 0.1531 0.1542 0.1466 0.1534 0.1849 | 0.1858

(0.0019) | (0.0017) | (0.0015) | (0.0023) | (0.0009) | (0.0007)
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3.1 Analysis of the Head and Neck Cancer Data

We analyzed the publicly available microarray data in the study of head-and-neck
cancer [8]. Most head-and-neck cancers are squamous cell carcinomas (HNSCC),
originating from the mucosal lining (epithelium) of these regions. The data consist
of tumor and normal tissues from 22 patients with histologically confirmed
HNSCC. The expression levels of 12625 cellular RNA transcripts were assessed
for this study. It also contains 42 head-and-neck cancer genes used as positive
controls, ie., genes known in advance to be DE.

(a) Top 100 DE Genes (h) Top 500 DE Genes

() Top 1000 DE Genes

Figure 2: Ven-diagram of (a) Top 100 DE genes by EBarrays-LNN (EB-LNN), BRIDGE
and Proposed approach, (b) Top 500 DE genes and (c) Top 1000 DE genes for head and
neck cancer data.

We applied classical EBarrays-LNN, Bridge and Proposed robust approaches to
analysis head and neck cancer data [12]. Figure 2 shows the ven-diagram of (a)
top 100 DE genes by 3 methods, where number of common DE genes between
EBarrays-LNN & BRIDGE is 18, number of common genes between proposed
method & EBarrays-LNN is 41, number of common DE genes between Bridge &
proposed method is 53, and number of common DE genes among 3 methods is 8.
(b) top 500 DE genes by 3 methods, where number of common DE genes
between EBarrays-LNN & BRIDGE is 308, number of common DE genes
between EBarrays-LNN & proposed method is 341, the number of common DE
genes between Bridge & proposed method is 353, and number of common DE
genes among 3 method is 125. (c) Top 1000 DE genes by 3 methods, where
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number of common DE genes between between EBarrays-LNN & BRIDGE is
718, where number of common DE genes EBarrays-LNN and proposed method
common DE 715 but Bridge and proposed method common gene are 725 and both
methods common DE genes 628.

3.2 Analysis of Lung Cancer Data

We also analyzed publicly available microarray data in a study of two types of
lung cancer [9]. Non-small cell lung cancer (NSCLC) is the most common
bronchial tumor, which can be classified into two major histological subtypes:
adenocarcinoma (AC) and squamous cell carcinoma (SCC). After quality
assessment of 60 microarray hybridizations, the data represent the gene expression
profiles of 54675 cellular RNA transcripts in 40 AC and 18 SCC samples.

(1) Top 500 DE Genes

(a) Top 100 DE Genes

(c) Top 1000 DE Genes

Propased

Figure 3: Ven-diagram of (a) Top 100 DE genes among EBarrays-LNN (EB-LNN),
BRIDGE and Proposed approach, (b) Top 500 DE genes and (C) Top 1000 DE genes for
lung cancer data

We compare the EBarrays-LNN and Bridge with proposed models to analysis
lung cancer data [13]. All the three methods detected DE gene are follows in
shown the Ven-diagram of (a) Top 100 genes among EBarrays-LNN, BRIDGE
and Proposed approach we found that EBarrays-LNN and Bridge common 13
genes but our proposed method with EBarrays-LNN and Bridge common DE
genes are 31 and 41 (b) Top 500 common DE genes among EBarrays-LNN,
BRIDGE and Proposed approach in case found that EBarrays-LNN and Bridge
common 309 genes but our proposed method with EBarrays-LNN and Bridge
common DE genes are 298 and 326 and (c) Top 1000 DE genes among
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EBarrays-LNN, BRIDGE and Proposed approach also found that EBarrays-LNN
and Bridge common gene are 685genes but our proposed method with EBarrays-
LNN and Bridge common DE genes are 668 and 721 and both methods common
595 genes

4. Conclusions

In this study, we propose a robust LRT criterion for the detection of DE genes.
We used a simulation and a real dataset to examine the proposed model of LRT.
Our resultant analyses show that the proposed method improves the performance
over the classical existing and Bayesian approaches.
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