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Abstract 
 

Simple interval mapping approaches have been playing the significant role for QTL 

(quantitative trait loci) analysis. However, these approaches cannot detect the multiple 

linked QTLs. Composite Interval Mapping (CIM) is one of the most popular approaches 

for identifying multiple linked QTLs even if they are located nearby at the same 

chromosome. However, classical CIM approach fails to identify QTLs in presence of 

phenotypic outliers. Therefore, in this study, an attempt was made to investigate 

performance of robust CIM approach, which was developed by maximizing β-likelihood 

function for robust QTL analysis. The performance of the robust CIM method depends on 

the value of tuning parameter β. It reduces to the traditional CIM when β → 0. We 

compared the robust CIM method with classical CIM and interval mapping approaches 

for identifying multiple linked QTLs by extensive simulation study. It was observed that 

simple interval mapping approaches cannot detect the multiple linked QTLs, whereas 

CIM can detect multiple linked QTLs correctly in absence of phenotypic outliers. 

However, the robust CIM method can detect the multiple linked QTLs in absence and 

presence of phenotypic outliers. Therefore, the robust CIM method improves the 
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performance over the existing CIM approach for QTL analysis. In this study, we 

developed a pipeline for imputing missing genotypes by using Bayesian classification 

approach. Simulation result shows that, if we impute 25% missing genotypes than 

maximum 5% genotypes for the markers could be incorrectly imputed, and we can 

identify most of the causal QTLs using the imputed genotypes. 

Keywords: Composite interval mapping, link genes, robust QTL analysis, gaussian 

mixture distribution, maximum β-likelihood estimation, genotype Imputation. 

AMS Classification: 62P10. 
 

1. Introduction 

Lander and Botstein (1989) first developed an idea of using flanking markers for 

detecting putative QTL positions in experimental crosses, which improved 

significantly in the past decade in identifying causal genes associated with traits of 

interest. They proposed Interval Mapping (IM) approach, which have been widely 

used for identifying putative QTL positions for different organisms (Islam, et al., 

2011; Tan, et al., 1998). Estimation procedure of genetic parameters of IM 

approach is based on maximum likelihood method, which is relatively complex 

and computationally slow. Haley and Knott (1992) proposed a QTL mapping 

approach based on multiple regression, which is relatively simple and can be 

applied using any general statistical package. This approach produce very similar 

results to those obtained by using maximum likelihood-based IM approach. For 

further improvement of the regression-based approach, Feenstra, et al. (2006) 

proposed extension of the Haley–Knott regression method by using estimating 

equations. Both approaches are approximations of the maximum likelihood-based 

IM method. In this study, we conducted simulation to observe performance of 

these methods. In experimental cross populations, the genetic effects associated 

with marker genotypes are confounded by the position of a functional QTL and its 

actual effect (Doerge, 2002). Linked QTLs are situated close to each other in the 

same chromosome. In testing the putative QTLs, it is necessary to fully isolate the 

effects of multiple possible linked QTLs on chromosomes. However, simple 

interval mapping approaches cannot separate effects of linked QTLs. Therefore, 

these approaches cannot precisely detect multiple linked QTLs, and provide 

flatted confidence interval for QTL positions. CIM approach is a powerful 

analytical technique, which can separate the effects of QTLs from its position 

along with increase the reliability and accuracy of QTL mapping (Zeng, 1994).  
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CIM approach has several advantages than other mapping methods. The basis of 

this method is an interval test in which the test statistic is constructed to be 

unaffected by QTLs located outside a defined interval. This is achieved by using 

the properties of multiple regression analysis (Zeng, 1994). A natural way to 

eliminate the influence of genetic background is to attempt to remove this 

confounding information using covariates or cofactor. CIM constructs test 

statistics by combining interval mapping on two flanking markers and multiple 

regression analysis on the other markers. For this property it can identify linked 

genes which are located near at the same chromosome. However, CIM approach is 

not robust against phenotypic outlier because of using classical maximum 

likelihood approach in estimating genetic parameters. Classical CIM approach can 

be robustified by replacing its parameter estimation procedure by maximum beta-

likelihood approach (Mihoko and Eguchi, 2002; Mollah and Eguchi, 2008). In this 

study, we investigated performance of the robust CIM approach for identifying 

causal QTL positions in presence and absence of phenotypic outliers. We 

compared the robust CIM approach with classical interval mapping approaches.  

Missing genotypes of multiple markers is very common in real experimental cross 

genotype data. Therefore, before performing QTL analysis it is needed to 

efficiently impute the missing genotypes of multiple markers over whole genome. 

In this study, an attempt was made to develop pipeline for imputing missing 

genotypes by using Bayesian classification approach. We investigated 

performance of the developed pipeline for imputing missing genotypes and impact 

of the genotype imputation on QTL analysis. 

 

2. Materials and Methodology 

2.1 Statistical Genetic Model for CIM Approach 

The CIM is a powerful interval mapping approach for detecting QTLs positions. 

This approach modifies the standard interval mapping approach by including 

background markers as cofactors, described independently by Zeng (1993), and 

Jansen and Stam (1994). For Backcross population, suppose that we want to test 

for a QTL on a marker interval (i, i+1). If we use markers i and i+1as an indicator 

for the genotype of the putative QTL within the interval, then the statistical model 

suggested by Zeng as – 
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(1) 

where, yj is the trait value of the j
th

 individual, b0 is the mean of the model, b∗ is 

the effect of the putative QTL expressed as a difference in effects between 

homozygote and heterozygote mode of QTL, xj
*
 is an indicator variable, taking a 

value 1 or 0 with probability depending on the genotypes of the markers i and i+1 

for j
th

 individual and the position of the QTL, bk is the effect of k
th

 marker 

cofactor, xjk is genotype of k
th

 marker for j
th

 individual, taking a value 1 or 0 

depending on whether the marker type is homozygote or heterozygote and ej is a 

random variable.Assuming ej’s are identically and independently normally 

distributed with mean zero and variance σ
2
, the likelihood function under H1 is 

given by– 

 1

1

(1) (1) (0) (0)

n

j j j j

j

L p f p f


 
                                                                                

 (2) 

where pj(1) gives a prior probability of xj
*
 =1, pj(0) = 1− pj(1),fj(1) and 

fj(0)specify a normal density function for the random variable yj with mean 
*

0 , 1 k jkk i i
b b b x

 
  and 

0 , 1 k jkk i i
b b x

 
 , respectively, and a variance σ

2
. By 

differentiating the likelihood function (2) with respect to individual parameters, 

setting the derivatives equal to zero, and then solving the equations, the maximum 

likelihood (ML) estimates of the parameters b∗, bk’s and σ
2
 can found as follows- 

* ˆ ˆ ˆ( ) /b Y XB P c                                                                                                      (3) 
1 *ˆˆ ˆ( ) ( )B X X X Y Pb
                                                                                                (4) 

2 *2ˆˆ ˆˆ ˆ[( ) ( ) ] /Y XB Y XB cb n     (5) 

where, Y is a (n × 1)vector of phenotypes yj’s, B̂ is a ((t − 1) × 1) vector of the 

ML estimates of bk’s, X is an (n × (t − 1)) matrix of xjk’s, P̂ is a (n × 1) vector 

with elements ˆ
j

P  specifying the ML estimate of the posterior probability of xj
*
 = 1:    

ˆ ˆ ˆˆ (1) (1) / [ (1) (1) (2) (2)]
j j j j j j j

P p f p f p f                                                                        (6) 

and, 
1

ˆˆ
n

j

j

c P


                                                                                                          (7) 

Estimates of the parameters can be found by iterative procedure of the above 

equations via the expectation conditional maximization (ECM) algorithm. 

The hypotheses are H0: b∗ = 0 and H1: b∗ ≠ 0. The likelihood function under the 

null hypothesis is 
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with the ML estimates 
1ˆ ( )B X X X Y
  (9) 

2 ˆ ˆˆ ( ) ( ) /Y XB Y XB n                                                                                           (10) 

The likelihood ratio (LR) test statistic is defined by- 

0

1

2 ln
L

LR
L

 
 
 
 

                                                                                                     (11) 

Estimated effects of QTLs by using this approach are unaffected by other linked 

QTLs. 
 

2.2 Robust CIM by Maximizing β-Likelihood Function Using EM 

Algorithm 

The β-likelihood function was developed by minimizing β-divergence (BASU, et 

al., 1998; Mihoko and Eguchi, 2002; Mollah and Eguchi, 2008). It is defined as- 
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In our current context 
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is the normal mixture model. Then the estimators of the parameters are obtained 

by maximizing β-likelihood function using EM like algorithm by treating the 

normal mixture model as an incomplete data density. And the estimators of the 

parameter under alternative hypothesis are given as– 
1
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where,  
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(16) 

V = 1
T
Pβ(D#D) and the notation # denotes Hadamard product and D is the design 

matrix, D
T
 = [1, 0]. Under null hypothesis the minimum β-divergence estimators 

for the parameters are obtain iteratively as follows- 
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                                                                 (19) 

which is the vector of the β-weight under H0. Thus β-LOD score for the evidence 

of a QTL is given by- 

    
0

0.434 sup | , sup | ,n LO Y X L Y XL D
  

 

                                                     (20) 

For β→0, the LODβ reduce to the classical LOD score. 
 

 

2.2.1 Initialization Parameters 

We used initial value for the parameter Bas- 

 
1

0

T T
B X X X Y



  

where, X is (n × (t − 1)) incidence matrix of the (t − 2) markers; b0 is the model 

mean; and Y is the refined phenotypic value of the individuals. In this case, 

phenotypic data must need to between 0.5Q1 and 2Q3, where Q1 is first quartile 

and Q3 is third quartile of the phenotypic observations. If yj is greater than 2Q3 or 

less than 0.5Q1 than it was replaced by the median of the phenotype value. We 

used b∗ = 0 as the initial value suggested by Zeng (1994). 

2.3 Imputing Missing Marker Genotype 

Missing of genotypes of the genetic markers is very common in QTL analysis. If 

markers contain missing genotypes, estimating genetic parameters using the CIM 

method is not feasible. For estimating the genetic parameters of the CIM method, 

it is needed to impute missing genotypes of the markers. In this study, we 

developed a pipeline of imputing missing genotypes based on naïve bayes 

classification approach. We imputed missing marker-genotypes using Bayesian 

classification based on conditional genotype probabilities, which can be calculated 
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by different map functions (e.g., Haldane, Kosambi, c-f and Morgan). We used 

haldane map function to calculate conditional genotype probabilities. If pij(1) and 

pij(2) are the probabilities for QQ and Qq, respectively, and if the value of the 

genotype QQ is 1 and the value of genotype Qq is 2, then we calculated Pij as- Pij 

= 1× pij(1) + 2 × pij(2). Based on known genotype of the i
th

 marker and 

corresponding Pi, we trained the naïve bayes model and based on Pi of the 

unknown marker genotype the missing genotypes were imputed. Two types of 

genotypes were treated as two different populations for employing naïve bayes 

classification approach. 

 

3. Result 

3.1 Performance of Mapping Approaches in Absence of Outliers 

Main advantage of CIM over simple interval mapping approaches is identifying 

linked QTLs. In this study, we investigated the performance of linked QTLs 

identification of the CIM, IM, Hally-Knott (HK), extended Hally-Knott (eHK), 

and beta-likelihood based robust CIM method. We simulated genotype data by 

considering 4 chromosomes and each with 15 markers with maker interval 10cM. 

For phenotypic data, we considered total 10 QTLs are associated with simulated 

phenotypic traits, which are contributed to 81% phenotypic variations. Out of 10 

QTLs, one is located at the 3
rd

 marker of the 1
st
 chromosome, three are located at 

the 2
nd

, 5
th

 and 8
th

 markers positions of the 2
nd

 chromosome, another three are 

located at the 4
th

, 7
th

 and 13
th

 markers positions of the 3
rd

 chromosome, and last 

three are located at the 2
nd

, 5
th

 and 10
th

markers positions of the 4
th

 chromosome. 

Data for mapping QTLs consisted of markers information and phenotypic values 

for 300 individuals. Genotypes for each of the markers can be recorded in digital 

form, such as 1 and 0 for distinguishing the two marker types (homozygote and 

heterozygote). We conducted 100 simulations and calculated average LOD scores 

for each of the genome positions. From figure-1a, we observed that only CIM and 

robust CIM methods calculated high LOD score at the causal QTL position at 3
rd

 

marker of the 1
st
 chromosome. For both methods, LOD scores exceeded the 

predefined threshold for 5% level of significance, whereas average LOD scores 

calculated using simple interval mapping methods were below the threshold level. 

Form figure 1b, it was observed that calculated LOD scores using simple interval 

mapping methods exceeded predefined threshold for a large region. In this region, 

there were two different QTLs, however the methods failed to distinguished them. 

Similar problems for simple interval mapping was also observed for chromosome-

3 and chromosome-4. However, in all chromosomes CIM and robust CIM 

successfully identified causal QTLs. 
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Figure 1: The performance of different methods used to identify multiple 

linked QTLs in 100 simulations. Threshold values for two different methods 

were calculated by using permutation test with 5% level of significance. 

Threshold line was based on the average of threshold values for the methods. In 

the absence of phenotypic outliers, the LOD score of the genome locations were 

calculated by using different mapping methods. Different colors and line types 

were used for plotting LOD scores for different methods, e.g., blue solid line for 

classical CIM, red solid line for robust CIM, black dash line for IM, green dash 

line for HK, and sky blue for eHK. LOD scores for each of the four different 

chromosomes were plotted separately in fig1a, fig1b, fig1c and fig1d for 

observing clear view of the differences among the approaches. 

3.2 Performance of Robust and Classical CIM Approaches in Presence 

of Outliers 

We further investigated performance of CIM and robust CIM methods in presence 

of phenotypic outliers. We randomly allocated 5% outlying observations to the 

phenotypic data and calculated LOD scores using CIM and robust CIM 

approaches. It was observed that classical CIM is failed to detect QTLs in 

presence of phenotypic outlying observations (Figure 2). Moreover, LOD scores 

calculated using classical CIM approach exceeded predefined threshold in several 

wrong positions, which are false discovery of this method. Therefore, classical 

CIM approach could perform poorly for discovering QTL positions in presence of 
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phenotypic outliers. However, robust CIM approach identified all the QTLs 

positions correctly in presence of outlying observations. Moreover, no false 

discovery was observed in four different chromosomes. Therefore, robust CIM 

method provide good results in absence and presence of phenotypic outlying 

observation and solved the main drawback of the classical CIM approach. 

Figure 2: Performance of the classical CIM and robust CIM approaches for 

linked QTL identification in presence of outlier. Threshold values for two 

different methods with 5% level of significance were calculated by using 

permutation test. Threshold line was based on the average of the threshold values 

for the methods. LOD scores genome locations were calculated by using CIM and 

proposed robust CIM methods in presence of phenotypic outliers. Then average 

LOD scores for 100 simulations for each of the genome locations were plotted. 

Similar to figure-1, LOD scores for the four different chromosomes were plotted 

separately in fig2a, fig2b, fig2c, and fig2d.  
 

3.2 Missing Genotype Imputation and QTL Analysis 
 

We estimated missing genotypes of the markers using Bayesian classification and 

conditional genotype probabilities. We randomly generated 25% missing 

genotypes of the markers and predicted missing genotypes through classification. 

In this case, we considered 10 QTLs for generating phenotypic data. For 

convenience of graphical presentation we located 10 QTLs as follows- three QTLs 
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at the 2
nd

, 5
th

 and 10
th

 markers positions of the 1st chromosome, three at the 2
nd

, 

5
th

 and 8
th

 markers positions of the 2
nd

 chromosome, three at the 4
th

, 7
th

 and 13
th

 

markers positions of the 3rd chromosome, and last one at the 3
rd

 marker position 

of the 4
th

 chromosome. In figure- 3(a), we plotted missing genotypes of the 

markers. It was observed that missing genotypes were randomly distributed. After 

employing developed pipeline for predicting missing genotypes, it was observed 

that maximum 5% imputed genotypes could be incorrect. For most of the markers, 

misclassification rate is below of 3%. Therefore, developed pipeline can 

significantly correctly impute the missing genotypes. And this pipeline can be 

used for missing genotype imputation rather than arbitrarily guessing the missing 

genotypes. In simulation study, we performed QTL analysis with imputed and 

original genotypic data. It was observed that with imputed genotype data it is 

possible to identify most of the causal QTLs (Figure 3c-d). 

 

Figure 3: Missing genotypes imputation using Bayesian classification 

approach and QTL analysis using robust CIM approach. Here,(a) missing 

genotypes for 60 markers with respect to 300 individual lines; (b) mis-

classification rate in genotype imputation for each of the 60 markers; (c) original 

genotypes of the markers were analyzed using robust CIM approach; and (d) 

Genotype data with 25% imputed genotypes using Bayesian classification was 

analyzed using robust CIM approach. 
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4. Discussion 

QTL analysis is a powerful approach for discovering genes associated with 

phenotypic traits of different experimental crosses of animal and plants, largely 

being used since last decade (Barchi, et al., 2009; Quarrie, et al., 1997; van der 

Schaar, et al., 1997). There are many methods proposed for QTL analysis, such as, 

maximum likelihood-based interval mapping, regression-based interval mapping, 

composite interval mapping etc. Composite interval mapping is one of the popular 

QTL mapping approaches, which is used for precisely discovering linked and 

unlinked QTLs (Rodriguez-Zas, et al., 2002; Zeng, 1994). However, in presence 

of phenotypic outliers this approach could fail to identify causal QTLs and by the 

same time could detect wrong genome locations as QTLs. To solve this problem, 

robust CIM approach was developed based on beta-likelihood method for QTL 

analysis (Mollah and Eguchi, 2008). In this study, we discussed about the 

robustification of CIM algorithm for identification of both linked and unlinked 

genes by maximizing β-likelihood function using EM algorithm. Adjusting the 

value of parameter β plays a key role in the performance of the robust method. An 

appropriate value for the tuning parameter β can be selected by cross validation. 

However, in this study we used β = 0.2 heuristically. Simulation studies show that 

the robust method significantly improves the performance over the traditional IM 

and CIM methods in presence of phenotypic outliers; otherwise, it keeps equal 

performance to CIM. Missing genotypes of genetic markers very common in the 

real genotype data sets. Therefore, in this study an attempt was made to develop a 

pipeline for predicting missing genotypic data. We developed a procedure for 

predicting the missing genotype using Bayesian classification. Simulation study 

shows that, if we impute 25% missing genotypes by the developed pipeline than 

maximum 5% genotypes might be wrongly imputed. And, we can identify actual 

QTL positions using imputed genotypes. Our study could significantly improve 

QTL analysis results for different experimental crosses.  
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