B. Sc. in Materials Science and Engineering The University of Rajshahi Faculty of Engineering Department of Materials Science and Engineering

Curriculum for B. Sc. Engineering Session: 2023-2024

Examination

B. Sc. Engg. First Year	2024
B. Sc. Engg. Second Year	2025
B. Sc. Engg. Third Year	2026
B. Sc. Engg. Fourth Year	2027

B. Sc. in Materials Science and Engineering

The University of Rajshahi

Vision of the University:

To pursue enlightenment and creativity for producing world-class human resources to cater for the needs of changing time.

Mission of the University:

- 1. To ensure a world-class curriculum with talented academicians and conducive academic and research environment for generation and dissemination of knowledge.
- 2. To maintain international standards in education with focus on both knowledge and skills, and humanitarian and ethical values to meet the needs of the society and state.
- 3. To develop strategic partnerships with leading national and international universities, and organizations for academic as well as research collaborations.

Department of Materials Science and Engineering

Faculty of Engineering

Vision

Is to be a center of education and research to create innovative engineers who can meet the global challenges of Tomorrow's Materials Science and Engineering arena.

Mission

To achieve the vision, we want to

- 1. Cultivate students with a vibrant engineering education and prepare them with future outlook.
- 2. Promote cutting-edge materials based interdisciplinary research to figure out sustainable solution for national and global problems.
- 3. Develop new material, design or technology with focus on 'Make in Bangladesh' and `Future Today` concept.
- 4. Nourish leadership role of the students to be compatible for multi-disciplinary materials community.

Objectives of the Program Offering Entity (POE)

Materials Science and Engineering is one of the most important, lucrative and utility subject of modern science. Nowadays, the subject is considered as the barometer of the development of a country. The objectives of Materials Science and Engineering department is to create skilled engineers who can deal with the processing, designing, characterizing the materials, develop new materials, produce cost effective materials and apply the materials in structures, machines and devices of technological importance.

Name of the Degree: B. Sc. Engineering

Description of the Program:

The B.Sc. Engineering in Materials Science and Engineering program shall be offered over a period of four academic years, each of a normal duration of one calendar year. The four academic years shall be designated as First Year, Second Year, Third Year and Fourth Year in succeeding higher levels of study. The academic year will be divided into two semesters (First and second). Under no circumstances, any student shall be allowed to continue his/her study for B.Sc. Engineering degree for more than six academic years. A student will be required to have 70% attendance of the total number of periods of lectures/tutorials/laboratory classes held during the semester in every course to appear as a regular candidate at that semester final examinations. The courses offered for Materials Science and Engineering department will consist of theoretical, practical, viva-voce, quizzes/class tests, attendance, and research project and are of 4000 marks (160 credits).

Program Educational Objectives (PEOs)

The graduates of Materials Science and Engineering Program at University of Rajshahi will

- 1. be compatible for employment and research in industry, laboratories, as well as academia and allied professions.
- 2. be engaged in materials discovery and/or processing to meet national or global challenges.
- 3. demonstrate ethical responsibility for their profession and community.
- 4. serve the society through science and technology.

Program Learning Outcomes (PLOs)

After completion of the B.Sc. Engineering in Materials Science and Engineering program graduates will be able to

PLO-1 PLO-2	Engineering knowledge: Demonstrate appropriate breadth and depth of knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to solve complex materials science and engineering related problems. Problem analysis: Identify, formulate, research literature and analyze complex
	engineering problems to establish conclusions using first principles of mathematics, natural sciences and engineering sciences.
PLO-3	Design/development of solutions: Design systems, components, processes or a new material to solve a complex engineering problem that meet specified needs with appropriate consideration for public health, and safety, cultural, societal and environmental considerations.
PLO-4	Investigation: Conduct investigations of complex problems using research-based knowledge of materials science and engineering to search new methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
PLO-5	Modern tool usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools, including prediction and modeling, to complex materials engineering problems.

PLO-6 PLO-7	The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems. Environment and sustainability: Understand and evaluate the sustainability and
	impact of a new material or technology while solving complex engineering problems in societal and environmental contexts.
PLO-8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
PLO-9	Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
PLO-10	Communication: Communicate effectively unanswered questions about materials in writing and oral presentations; express the scientific and societal impact of their work; and disseminate new knowledge through archived publications, such as articles, theses, effective reports and design documentation on complex engineering activities with the engineering community and society.
PLO-11	Project management and finance: Demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work as a member and leader in a team, to manage projects and in multi-disciplinary environments.
PLO-12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in, independent and life-long learning in the broadest context of technological change.

Mapping mission of the University with PEOs

PEOs	Mission 1	Mission 2	Mission 3
PEO 1	\checkmark		\checkmark
PEO 2			\checkmark
PEO 3		\checkmark	
PEO 4		\checkmark	

PLOs	PEO 1	PEO 2	PEO 3	PEO 4
PLO 1	\checkmark			
PLO 2	\checkmark			
PLO 3	\checkmark			
PLO 4	\checkmark			
PLO 5	\checkmark			
PLO 6			\checkmark	
PLO 7			\checkmark	
PLO 8			\checkmark	
PLO 9			√	
PLO 10	\checkmark			
PLO 11	\checkmark			
PLO 12	\checkmark			

Mapping PLOs with the PEOs

Structure of the Curriculum

1. Duration of the Program: The B. Sc. Engineering program shall extend over a period of four academic years, each of a normal duration of one calendar year, divided into 2 Semesters.

2. Admission Requirements:

- **2.1** The rules for admission of new students shall be framed by the academic council on the recommendation of admission committee of the university.
- **2.2** There will be four academic years and eight semesters of study for the degree of B.Sc. Engg. Academic Years and Semesters will be designated as the First Year: First Semester & Second Semester, Second Year: First Semester & Second Semester and so on, respectively. Students shall generally be admitted into the First Year. In special cases, students may be admitted into a higher class on the recommendation of the appropriate Equivalence Committee and Department concerned, only in case of transferred students.
- **2.3** A candidate for admission into the First Year class must have passed the HSC or equivalent Examination (with a minimum GPA as decided by the Admission Committee of RU) from a Board of Intermediate and Higher Secondary Education/equivalent in Bangladesh (after 12 years of Schooling) with Physics, Chemistry and Mathematics. The candidate must also fulfill all other requirements as prescribed by the Admission committee of the University.
- **3. Requirements to complete the program**: In order to qualify for the B. Sc. Engineering degree, a student must have to earn minimum 152 credits and a minimum CGPA of 2.50 within a maximum of six academic years.

4. Academic Calendar:

First Semester (24 weeks)	Number of weeks
Teaching	14
Preparatory Leave	2
Examination Period	2 - 4
Result Publication	2 - 4
Inter Semester Recess	1
Second Semester (24 weeks)	
Teaching	14
Preparatory Leave	2
Examination Period	2 -4
Result Publication	2-4
Inter Year Recess	1

5. Distribution of Courses:

Course Type	Marks	Percentage of total marks	Credits
Humanities	200	5	8
Technical English	50		2
Economics	50		2
Industrial Management and Accountancy	50		2
Law and Professional Ethics	50		2
Basic Science with Lab	775	19.375	31
Mathematics	225		9
Physics	275		11
Chemistry	225		9
Statistics	50		2
Basic and Major Engineering	3025	75.625	121
(i) Basic Engineering with Lab	250	6.25	10
Computer Science and Engineering	125		5
Electrical and Electronic Engineering	75		3
Mechanical Engineering	50		2
(ii) Major Engineering	2775	69.375	111
(a) Theoretical	1825		73
(b) Laboratory with Project	750		30
(c) Board Viva-voce	200		8
Total	4000	100	160

Grading Systems:

1. Grading Scale

Marks	Letter Grade (LG)	Grade Point (GP)
80% or above	A+	4.0
75% to less than 80%	А	3.75
70% to less than 75%	A-	3.5
65 to less than 70%	B+	3.25
60% to less than 65%	В	3.0
55% to less than 60%	В-	2.75
50 to less than 55%	C+	2.5
45% to less than 50%	С	2.25
40 to less than 45%	D	2.0
less than 40%	F	0.0
Incomplete	Ι	0.0

1.1 The letter grade system for assessing the performance of the students shall be as follows:

*The total marks of each theoretical/laboratory/project courses shall be rounded up to second place of decimal for LG and GP calculation, for example 60.542 marks shall be rounded up to 60.55.

1.2 A Semester Grade Point Average (SGPA) shall be calculated for each semester as follows:

$$SGPA = \frac{\sum_{i=1}^{n} C_{i}G_{i}}{\sum_{i=1}^{n} C_{i}}$$
(i)

where, n is the number of courses offered during the semester, C_i is the number of credits allotted to a particular course and G_i is the grade point earned for that course.

1.3 A Yearly Grade Point Average (YGPA) shall be calculated for each academic year as follows:

$$YGPA = \frac{\sum_{j=1}^{2} C_{j} G_{j}}{\sum_{j=1}^{n} C_{j}}$$
 (ii)

Where 2 is the number of semester, C $_{j}$ is the number of credits allotted to a semester and G $_{j}$ is the GPA earned for that semester.

1.4 The **Cumulative Grade Point Average (CGPA)** gives the cumulative performance of the students from the 1st year up to the end of the year to which it refers, and will be calculated as follows:

$$CGPA = \frac{\sum_{k=1}^{m} C_{k} G_{k}}{\sum_{k=1}^{m} C_{k}}$$
(iii)

where, m is the total number of years being considered, C_k is the total number of credits registered during a year and G_k is the YGPA of that particular year.

- 1.5 Both SGPA and YGPA will be rounded off to the third place of decimal for reporting. For instance, SGPA=3.2149 shall be rounded off as SGPA=3.214, similarly YGPA=3.2108 shall be rounded off as SGPA=3.210. The CGPA will be rounded up to the second place of decimal for result. For instance, CGPA=3.485 shall be rounded up as CGPA=3.49, similarly CGPA=3.354 shall be rounded off as CGPA=3.35.
- 1.6 **Earned Credit:** The minimum passing grade will be 'D' in each course. Any course in which a student obtains 'F' grade will not be counted towards his/her earned credit.

2. Attendance

- 2.1 In order to be eligible for appearing, as a regular candidate, at the semester final examinations, a student shall be required to have attended at least 75% of the total number of periods of lectures/tutorials/laboratory classes held during the semester. The laboratory courses mean all laboratory/project/fieldwork/in-plant training and any other similar courses.
- 2.2 A student whose attendance falls short of 75% but not a below 60% as mentioned above may be allowed to appear at the semester final examinations as non-collegiate student. A student, appearing at the examination under the benefit of this provision shall have to pay, in addition to the regular fees, the requisite fine prescribed by the syndicate for the purpose.
- 2.3 Students having less than 60% attendance in lecture/tutorial/ laboratory will not be allowed to sit at the final examinations of the semester.
- 2.4 An attendance report of the students shall be prepared by the concerned course teacher for his/her Class. The class attendance report will be handed over to the Chairman of concerned department within two days of the last class of the course and will be preserved as examination record to the examination committee. Awarded marks for class attendance of the students will be posted in the prescribed marks sheet. Class attendance will be recorded electronically in every class and finally be handed over to the chairman of the department and will be preserved as examination record to the examination committee.

3. Conducting Examination and Rules for Promotion

3.1 The academic year shall be divided into two semesters each having duration of 14 teaching weeks.

- 3.2 There shall be final examinations conducted by the concerned Examination Committee of the Departments at the end of each semester.
- 3.3 The results shall be finalized at the end of each semester of the academic year.
- 3.4 **Promotion to higher class:** In order to be promoted to higher class a student must obtain the following requirements:
 - (i) First Year: YGPA ≥ 2.00
 - (ii) Second Year: YGPA ≥ 2.25
 - (iii) Third Year: minimum YGPA ≥ 2.50
 - (iv) Minimum grade point of laboratory course/project/fieldwork/in-plant training/vivavoce etc. is 2.0

3.6 **Course Improvement**:

- **3.6.1** A promoted student only be allowed to appear in the theoretical course improvement examination in the immediate next academic year for one time in order to improve a maximum of 6 credits (two theoretical courses). To clear F grade the candidate will be allowed to appear in the examination for maximum of two times in the immediate consecutive similar semesters. In such case, the student has to give his/her choice of course/courses for course improvement in writing. In the case of student's failure to improve his/her course grade at the course improvement examination, the previous grade shall remain valid. This will be applicable up to third year second semester.
- **3.6.2** Theoretical course improvement will only be allowed if the earned letter grade is less than "B-" (GP < 2.75).
- **3.6.3** In practical courses a student will not be allowed to appear in clearing F grade or improvement examination.
- 3.6.4 A student will carry his/her previous marks on continuous assessment (CA).
- 3.6.5 In case of student's failure to improve course grade at the course improvement examination, the previous grade will remain valid.
- 3.7 **Merit Position:** The YGPA obtained by a student in first year, second year and third year and CGPA obtained in the fourth year will be considered for determining the merit position for the award of scholarships, stipends etc.

3.8 Class Test/Class Assessment

- 3.8.1 For theoretical courses of less than or equal to 2 credits there shall be at least **three** class tests and at least four class tests for course greater than 2 credits in a semester.
- 3.8.2 The class test/class assessment will be evaluated by the class teacher and marks with scripts will be submitted to the examination committee for preservation.
- 3.9 **Duration of Examination:** Duration of Theoretical **examination of different courses** at the end of the semester shall be as follows:

Course less than or equal to 2 credits	: 2 Hours
Course greater than 2 credits but less than or equal to 4 credits	: 3 Hours

4. **Publication of results**

- 4.1 Award of degree: In order to obtain B.Sc. Engg. Degree a student must fulfill the following conditions:
 - (i) Bachelor degree program must be completed within 4–6 academic years from the date of admission. A student will not be allowed to stay for more than two consecutive years in the same academic year.
 - (ii) The minimum CGPA for awarding B.Sc. Engg. Degree is 2.50 out of 4.00.
 - (iii) The total credit point required for awarding B.Sc. Engg. Degree is 160 with the exemption of maximum 8 credits. The result will be published in accordance with merit.
- 4.2 **Degree with Honours:** Candidates for Bachelor degree in engineering will be awarded the degree with Honours if their earned credit is 160 and CGPA is 3.75 or higher.
- 4.3 **Final Result (CGPA) Improvement:** A student obtaining B.Sc. Engg. Degree within 4 or 5 academic years will only be allowed to improve result in the immediate next regular examination. A student will only be allowed to take part in result improvement examination for a maximum of two theoretical courses (maximum of 6 credits) in fourth year if the earned letter grade is less than B (CGPA<3.0). If a candidate fails to improve CGPA with the block of new GP in total, the previous results shall remain valid.
- 4.4 **Readmission:** If a student fails to obtain the degree within 4 or 5 academic year, he/she will be readmitted in fourth year and will appear for the examination.
- 4.5 **Dean's List:** As a recognition of excellent performance, the names of students obtaining a CGPA of 3.75 or above in the final examination may be published in the Dean's List in the faculty. Students who have received an 'F' grade in any course will not be considered for Dean's List.
- 4.5 **Credit Transfer:** A student will be allowed at best one semester in his/her undergraduate program with the relevancy of course curriculum from a designated university under exchange program. Credit of a semester completed from the foreign university will be added which will not be more than the assigned credit for a semester and maximum 8 credit can be adjusted in the immediate next semester. Subject and course should be approved through the relevance committee of the faculty.

5. Distribution of Marks (as per course types)

5.1	Theor	etical Courses:					
		Continuous	Class Attendance	10%	6	30%	
		Assessment (CA)	Quizzes/Class Test	20%	6		
		Semester Final Examina	tion			70%	
		Total				100%	
5.2	Labor	atory(practical/session	al)				
		Class Attendance				10%	
		Quizzes, viva-voce and	l continuous assessm	ent		30%	
		Practical examination/	Design work/ Report	,		60%	
		Total	• •			100%	
5.3	Projec	t Work/Field Work//Ir	dustrial Training/	Pro	fessio	nal Train	ing
		Internal Examiner (Supe	ervisor)			60%]
		External Examiner (Any	teacher from the pa	nel of	2		
		examiners)					
		Presentation and Oral E	xamination			40%	
		Total				100%	
5.4	Basis	for awarding marks for	or class participation	and	atten	dance:	
		Attendance			Ma	arks (%)	
		90% and above				100	
		85% to less than 90%				90	
		80% to less than 85%				80	
		75% to less than 80%				70	
		70% to less than 75%				60	
		65% to less than 70%				50	
		60% to less than 65%				40	
		less than 60%				0	

6. Duration of Course and Course Structure

Teaching of the courses is reckoned in terms of credits and the credits allotted to various courses will be determined by the Committee of Courses under the following guidelines;

Nature of course	Contact hour/credit (in a semester)
Theoretical Lecture	1 hour/week
Laboratory/Project	2 - 3 hours/week
Field work	2 weeks of field work

Voor	The	Theory		Lab and Others		Total	
Somostor	No. of	Credits	No. of	Credits	No. of	Credits	
Semester	Courses		Courses		Courses		
1 st – First	6	16	2	4	8	20	
1^{st} – Second	5	12	4	8	9	20	
2 nd – First	6	16	2	4	8	20	
2 nd -Second	6	14	3	6	9	20	
3^{rd} – First	5	14	3	6	8	20	
3 rd – Second	5	14	3	6	8	20	
$4^{th} - First$	5	14	3	6	8	20	
4 th -Second	5	12	4	8	9	20	
Total	43	112	24	48	67	160	

Summary of number of courses for the degree of B.Sc. Engineering

Summary of Courses

First Year First Semester Examination, 2024

Course Code	Course Title		Credits	Contact Hours/Week
MSE1111	Introduction to Materials Science & Engineering	75	3	3
MSE1121	Crystallography-I	50	2	2
MATH1111	Algebra, Trigonometry & Vector Analysis	75	3	3
PHY1111	Mechanics & General Properties of Matter, Waves and Sound		3	3
CHEM1111	Physical and Inorganic Chemistry	75	3	3
ENG1111	Technical and Communicative English	50	2	2
MSE1112	MSE1112 Qualitative and Quantitative Analysis of Materials Laboratory		2	4
CHEM1112	Physical Chemistry Laboratory	50	2	4
	Total	500	20	24

First Year Second Semester Examination, 2024

Course Code	Course Title	Marks	Credits	Contact Hours/Week
MSE1211	Crystallography-II	50	2	2
PHY1221	Electricity & Magnetism	75	3	3
MATH1211	Differential and Integral Calculus	75	3	3
CHEM1211	Organic Chemistry	50	2	2
ECON1211	Industrial Economics	50	2	2
MSE1212	Crystallography Laboratory	50	2	4
MSE 1222	Engineering Drawing Laboratory	50	2	4
ME1232	Mechanical Engineering Workshop	50	2	4
MSE1210	Viva-Voce	50	2	-
	Total	500	20	24

Course Code	Course Title	Marks	Credits	Contact Hours/Week
MSE2111	Phase Diagram and Microstructure of Materials	75	3	3
MSE2121	Construction Materials	50	2	2
MSE2131	Electronic Properties of Materials	75	3	3
MATH2111	Matrices and Differential Equations	75	3	3
PHY2111	Basic Electronics and Instrumentations	75	3	3
ACCO2111	Industrial Management and Accountancy	50	2	2
MSE2112	Metallography and Microstructure Laboratory	50	2	4
PHY2112	General Physics Laboratory	50	2	4
	Total	500	20	24

Second Year First Semester Examination, 2025

Second Year Second Semester Examination, 2025

Course Code	Course Title		Credits	Contact Hours/Week
MSE2211	Materials Thermodynamics and Kinetics	50	2	2
MSE2221	Materials for Energy Conversion and Storage	50	2	2
EEE2211	Electrical Engineering	75	3	3
CSE2211	Computer Fundamentals and Programming in C & C++	75	3	3
STAT2211	Statistics for Engineers	50	2	2
LAW2211	Law and Professional Ethics	50	2	2
CSE2212	Computer Programming and Electrical Laboratory	50	2	4
CHEM2212	General Chemistry Laboratory	50	2	4
MSE2210	Viva-Voce	50	2	-
	Total	500	20	22

Third Year First Semester Examination, 2026

Course Code	Course Title		Marks	Credits	Contact Hours/Week
MSE3111	Polymeric Materials		75	3	3
MSE3121	Glass and Ceramics		75	3	3
MSE3131	Composite Materials		75	3	3
MSE3141	Mechanical Properties of Materials		75	3	3
MSE3151	Production Metallurgy		50	2	2
MSE3112	Polymer Synthesis and Characterization Laboratory		50	2	4
MSE3122	Glass and Ceramic Processing Laboratory		50	2	4
MSE3132	Mechanical Property Testing Laboratory		50	2	4
		Total	500	20	26

Course Code	Course Title	Marks Credits		Contact	
Course Coue	Course Title	IVIALKS	Cicuits	Hours/Week	
MSE3211	Physical Metallurgy of Iron and Steels	75	3	3	
MSE3221	Materials Manufacturing Engineering	75	3	3	
MSE3231	Corrosion Engineering	75	3	3	
MSE3241	Electrochemical Engineering	75	3	3	
MSE3251	Optics and Optical Properties of Materials	50	2	2	
MSE3212	Electrochemical and Corrosion Laboratory	50	2	4	
MCE2022	Computer Aided Engineering Drawing & Designing	50	2	4	
MSESZZZ	Laboratory	50	Z	4	
MSE3210	Viva-Voce	50	2	-	
	Total	500	20	22	

Third Year Second Semester Examination, 2026

Fourth Year First Semester Examination, 2027

Course Code	Course Title	Marks	Credits	Contact Hours/Week
MSE4111	Microscopic Methods in Materials Characterisation	75	3	3
MSE4121	Plastic and Rubber Technology	75	3	3
MSE4131	Magnetic and Dielectric Materials	75	3	3
MSE4141	Waste Management, Industrial Safety and Environmental Issues	75	3	3
MSE4151	Surface Science and Engineering	50	2	2
MSE4112	Metallurgical Laboratory	50	2	4
MSE4122	Polymer Processing Laboratory	50	2	4
MSE4132	Electronic Materials Laboratory	50	2	4
	Total	500	20	26

Fourth Year Second Semester Examination, 2027

Course Code	Course Title	Marks	Cradits	Contact
Course Coue			Cieuns	Hours/Week
MSE4211	Nano- and Biomaterials	75	3	3
MSE4221	Spectroscopic Analysis of Materials	75	3	3
MSE4231	Welding and Joining Technology	50	2	2
MSE4241	Engineering Materials	50	2	2
MSE4251	Fiber Technology	50	2	2
MSE4212	Welding and Joining Laboratory	50	2	4
MSE4222	Industrial Training/ Project/Study tour / Field work	50	2	-
MSE4232	Research Project	50	2	-
MSE4210	Viva-Voce	50	2	-
	Total	500	20	16

Course Outline

First Year First Semester Examination, 2024

Course Code:	MSE1111	Course Title:	Introdu	iction	to Materials	Science	and Engineering
Course Credit:	3	Course Teache	er(s):	1. D	r. Mohammac	d Abdulla	h Al Mamun
				2.	Md. Shahnaw	vaz Parve	Z

Course Description:

This course designed to familiarize the students with the fundamental concepts of materials science and engineering, which will be used as background knowledge for the understanding of specialized courses in the field of Materials Science and Engineering. Thus, this course introduces the type of materials, structure, properties, characteristics and applications with special emphasis on the relationships between internal structure and properties.

Course Objective (Intended Learning Objectives, ILOs):

- 1. Familiarize the students about the importance of materials science in modern civilization.
- 2. Students will classify metals, ceramics, polymers, and electronic materials in context of atomic structure and interatomic bonding.
- **3.** The course will build up the students' ability to make the relation among processing, structure, and physical properties of materials

Course Learning Outcome (CLO):

After successfully completion the course the students should be able to:

- **1.** Classify the materials
- 2. Understand the basic properties that characterize the behavior of materials
- **3.** The course will build up the students' ability to make the relation among processing, structure, and physical properties of materials

Learning Outcomes	Course content	Teaching- learning strategy	Assessment Strategy
CLO-1	1. Understanding of Materials: Basic	Lecture	Full Marks: 75
	concepts of materials science and engineering, development of materials,	Exercise/Tutorial/	Attendance:10%
	classification of materials and their	quiz	Tutorial/Quiz:20%
	characteristics, uses of materials, advanced materials, modern materials'	Attendance	Exam: 70%
	needs, scope and applications of materials		
	science and engineering.		
CLO-1	2. Types of Solid Materials: Metal, polymer, ceramics, composites, semiconductor, crystalline & amorphous solids Superconductor Characteristics of		
	Materials.		
CLO-1,2	3. Materials Selection and Design:		
	Introduction, the importance of materials		
	selection, factors affecting the selection of		

		materials, relation of materials selection to design, product analysis, activities of
		product development.
CLO-2,2	4.	Solidification of Materials: Introduction,
		Nucleation and growth of Crystal,
		Homogeneous and heterogeneous
		nucleation, Types of Solid solution,
		Ordered and disordered solid solution,
		Grain and grain boundaries, Effect of
		cooling rate on grain size and mechanical
		properties.
CLO-2,3	5.	Diffusion in Solids: Diffusion
		mechanisms, steady-state & non-steady-
		state diffusions, factors that influence
		diffusion, other diffusion path.
CLO-3	6.	Properties of Materials: Electrical &
		electronic properties, Thermal
		&thermoelectric properties, Mechanical
		Properties, Optical properties, Magnetic
		properties.

Recommended book(s):

- Authors' name
- 1. William D. Callister
- 2. William F. Smith
- 3. L. H. Van Vlack
- 4. R.B. Gupta
- 5. K. J. Pascoe

Title

CallisterMaterials Science & Engineering – An IntroductionSmithFoundation of Materials Science and EngineeringlackElements of Materials Science and EngineeringMaterials ScienceProperties of Engineering Materials

Course Title: Crystallography-I

Course Code: MSE1121 Course Credit: 2 Course Teacher(s): Announce to be later

Course Description:

The objective of this course is to present the basic concepts needed to understand the crystal structure of materials. The chapter 1 is designed including different types of primary and secondary bonds that are exist in solid materials. A thorough description of a crystal is assigned in topics of lattice, basis, unit cell, crystal system, Atomic packing factor, lattice plane, lattice directions, and crystalline structure of metal, ceramics and polymer.

Course Objective (Intended Learning Objectives, ILOs):

- 1. Describe different types of bonds that are exists in solid materials.
- 2. Define lattice, crystal system, lattice plane and direction
- 3. Explain different types of defects in crystals.

Course Learning Outcome (CLO):

- After successfully completion the course the students should be able to:
- 1. Calculate packing factor, density, interplanar spacing, using the geometrical parameters of crystal system.
- 2. Clarify which type of defect has severe impact on material properties.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1	1. Solid Materials: Types of crystalline solids:	Lecture	Full Marks: 50
	ionic, covalent, molecular and metallic	Exercise/Tutorial/	Attendance:10%
	crystals. Cohesive energy of ionic crystals,	quiz	Tutorial/Quiz:20%
	lattice energy, Born-Haber cycle,	Attendance	Exam: 70%
	isomorphism, polymorphism, enantiotropy		
	and monotropy.		
CLO-1	2. Crystals and Crystal Structures: The		
	nature of crystalline states, faces, edges and		
	interfacial angle, space lattice, unit cells and		
	patterns, periodicity in crystals. Atomic		
	packing: hcp and ccp structures.		
	Construction of crystals: closed packed		
	hexagonal and square layers of atoms, body-		
	centred cubic crystal, and some simple ionic		
	and covalent structures. Selected crystal		
	structures: Pure metals, diamond and		
	graphite, co-ordination in ionic crystals, AB-		
	type compounds, silica, alumina, complex		
	oxides, silicates, crystallinity in polymers.		
CLO-1	3. Describing Lattice Planes and Directions		
	in Crystals: Arrangements of ions in		
	crystals, lattice planes, indexing lattice		
	directions and lattice planes, Miller indices		
	and zone axis symbols, Lattice planes in		
	cubic crystals: lattice plane spacing, inter-		
	planar distance, ratio of lattice spacing.		
	Miller indices and Laue indices; zones, zone		

Recommended Books:

- Authors' name 1. F. Donald Bloss
- 2. C. Hammond
- 3. C. Kittle
- 4. Uma Mukherji

<u>Title</u> Crystallography and Crystal Chemistry Introduction to Crystallography Introduction to Solid State Physics Engineering Physics

Course Code: MATH1111 Course Title: Algebra, Trigonometry and Vector Analysis Course Credit: 3 Course Teacher(s): Announce to be later

Course Description: This course is introducing to familiarize the students with linear algebra, trigonometry and vector analysis. This course provides the students a natural aid to the understanding of some physical concept in solving engineering problem.

Course Objective (Intended Learning Objectives, ILOs):

- 1. Introduce the fundamentals of algebra to solve mathematical equations.
- 2. Familiarize the students to understand trigonometric functions and calculating their value.
- **3.** Present the fundamental concepts of vector and to develop student understanding and skills in the topic necessary for its applications to science and engineering.

Course Learning Outcome (CLO):

After successfully completion the course the students should be able to:

- 1. Understand sets, relation and function to solve the systems of linear equation.
- 2. Use trigonometric functions of complex argument to model a variety of real-world problem solving applications.
- 3. Perform basic vector operations both graphically and algebraically addition, subtraction and scalar multiplication.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1	1. Algebra of sets, De Morgan's rule, relation &	Lecture	Full Marks: 75
	function. Determinants: Properties and	Exercise/Tutorial/	Attendance:10%
	Cramer's rule.	quiz	Tutorial/Quiz:20%
CLO-1	2. Theory of Equations: Theorem, and	Attendance	Exam: 70%
	relation between roots and coefficients,		
	Solution of cubic equations.		
CLO-1	3. De Moiver' theorem. Deduction from De		
	Moiver's theorem.		
CLO-2	4. Functions of complex arguments. Gregory's		
	series. Summation of series. Hyperbolic		
	functions.		
CLO-3	5. Vector Addition, Multiplication &		
	Differentiation.		
CLO-3	6. Definitions of line, surface and volume		
	integral. Gradient of scalar function,		
	Divergence and curl of vector function.		
	Physical significance of gradient, divergence		
	and curl. Integral forms of gradient,		
	divergence and curl, Divergence Theorem,		
	Stoke's theorem, Green's theorem and		
	Gauss's theorem.		

Suggested Reading Lists/Essential Readings

Author's Name

1.Higher Algebra

- : Title
- : H. S. Hall and S. R. Knight

2. Higher Trigonometry

- : B. C. Das and B. N. Mukherjee

3. Vector Analysis	:	M. R. Spiezel
4. Theory of Equations	:	Barnside and Panton

Course Code: PHY1111Course Title: Mechanics, GeneralProperties of Matter, Waves and SoundCourse Credit: 3Course Teacher(s):Announce to be later

Course Description: It is one of the fundamental course of physics related to the study of physics from the ground up, learning the basic principles of physical laws, their application to the behavior of objects, and the use of the scientific method in driving advances in this knowledge. In this course the students are introduced with the laws of rotational and oscillatory motions and the elastic behavior of maters and fluid dynamics of liquid are discussed. The students will also acquire knowledge on mechanical behavior of waves and forms of sound waves to know the applications in aspect of physics.

Course Objective (Intended Learning Objectives, ILOs):

- 1. To deliver knowledge on the fundamental laws of rotational and oscillatory motions.
- 2. To deliver idea about surface tension and viscous state of fluids.
- 3. To give knowledge on elasticity of solids.
- 4. To provide overall concept on mechanical and sound waves and their sources.

Course Learning Outcome (CLO):

After successfully completion, the course the students should be able to:

- 1. Acquires a thorough understanding of the principle of rotational and oscillatory motions of physical objects.
- 2. Understands the elastic properties of matter and the limits of elastic behavior.
- **3.** (a) Gains an appreciation of surface phenomena and the concept of energy involved in the creation of new surfaces.
 - (b) Understand the surface tension and viscosity of fluid.
 - (c) Analyze waves and oscillations.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1	1. Rotational Motions: Rotational variable;	Lecture	Full Marks: 75
	rotation with constant angular acceleration;	Exercise/Tutorial/	Attendance:10%
	relation between linear and angular	quiz	Tutorial/Quiz:20%
	kinematics, torque on a particle; angular momentum of a particle; kinetic energy of rotation and moment of inertia; conservation of angular momentum.	Attendance	Exam: 70%
CLO-1	2. Oscillatory Motions: Hooke's law and vibration; simple harmonic motion; combination of harmonic motions;		
CLO-3	3. Surface Tension: Surface tension as a molecular phenomenon; surface tension and surface energy; capillary rise or fall of liquids; pressure on a curved membrane due to surface tension.		

CLO-2	4. Elasticity: Moduli of elasticity, Poisson's ratios; relations between elastic constants and their determination.
CLO-3	5. Fluid Dynamics: Fluids, density, and pressure, fluids at rest, measuring pressure, Pascal's principle, Archimedes' principle, the equation of continuity, Bernoulli's equation, Viscosity and coefficient of viscosity.
CLO-3	6. Waves in Elastic Media: Types of waves, transverse and longitudinal waves, the speed of a travelling wave, energy and power of a wave traveling along a string, interference of waves, standing waves and resonance.
CLO-3	7. Sound Waves: Speed of sound, travelling sound wave, interference, intensity and sound level, beats, Doppler effects.

Suggested Reading Lists/Essential Readings

Author's Name

- 1. Mechanics and Properties of Matter
- 2. General Properties of Matter
- 3. Physics (Part-I & II)
- 4. Elements of Properties of Matter
- 5. General Properties of Matter
- 6. Mechanics
- 7. Text Book of Sound
- 8. Text Book of Sound
- 9. Waves

: <u>Title</u>

- : Ahmed & Nath
- : Emran et al
- : Halliday & Resnick
- : Mathur
- : Newman & Searle
- : Symon
- : Emran
- : Wood
- : Coulson

Course Title: Physical and Inorganic Chemistry

Course Code: CHEM1111 Course Credit: 3 Course Teacher(s): Announce to be later

Course Description: Materials science is a unique combination of applied physics and chemistry. This elementary course of chemistry will make the students familiar with the basic knowledge of electrochemistry, chemical equilibrium and kinetics, chemistry of the materials surfaces and colloids. This course will also help the students to understand the basic concept of atomic structure and bonding present in materials.

Course Objective (Intended Learning Objectives, ILOs):

- 1. Grow the students' ability to understand physio-chemical properties of materials.
- 2. Provide students the fundamental chemical principles of materials formation.

Course Learning Outcome (CLO):

After successfully completion the course the students should be able to:

- 1. Understand the elementary laws electrochemistry and apply them in various electrochemical cells.
- 2. Determine the rate of chemical changes of materials formation or materials interaction.
- 3. Demonstrate the role of surfaces during fluid- materials interaction.
- **4.** Explain the atomic structure based on quantum mechanics and understand the periodic properties of the atoms.
- 5. Explain and predict the structure and bonding in molecules.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1	1. Electrochemistry (10 Lectures):	Lecture	Full Marks: 75
	Conductors, Electrolytes and Electrolysis;	Exercise/Tutorial/	Attendance:10%
	Faradays Laws of Electrolysis and their	quiz	Tutorial/Quiz:20%
	significance. Ohm's law and electrolytic	Attendance	Exam: 70%
	conductance; Theories for electrolytic		
	conductance (Arrhenius& Debye-Hükel).		
	Ionic mobility, Kohlrausch's law,		
	Transference Number and its determination;		
	Activities, activity coefficient and Debye-		
	Hükel limiting law. Electrochemical cells		
	(Electrolytic and Galvanic/Voltaic):		
	Electrode reaction and potentials. Reference		
	electrodes; Reversible and concentration		
	cells, Storage Batteries(or accumulators).		
CLO-2	2. Chemical Equilibrium and Kinetics (10		
	lectures): Equilibrium and Equilibrium		
	constants, Kc, Kp, Kx. Rate of reaction and		
	rate constants; Le Chatelier principle and its		
	application. Order and molecularity of a		
	reaction; integrated rate expressions & half-		
	lives of zeroeth, first and second order		
	reactions. Determination of order &		
	temperature dependence of a reaction;		
	energy of activation and Arrhenius equation.		
	Transition-state theory of reaction rates.		

	Characteristics of catalysis, promoters and inhibitors
	2 Surface Chamister and Calleida (10
CLO-3	3. Surface Chemistry and Colloids (10
	lectures): Adsorption and sorption;
	Characteristics of physical and chemical
	adsorptions. Fruendlich, Langmuir and
	Gibb's Adsorption isotherms; The BET
	equation. Crystalloids, Colloids and their
	classification, preparation, properties
	(kinetic, colligative, optical & electrical) and
	importance, Original pf charge and stability
	of colloids (sols), Gold number; colloidal
	electrolytes. Elementary idea about
	emulsions and gels.
CLO-4	4. Atomic structure and Periodic Table (10
	lectures): Modern concept of atomic
	structure and Periodic Table; related
	principles and Laws. Constitution and
	Periodic properties of elements (ionization
	potential, electronegativity, electron affinity,
	atomic and ionic radii). Grouping of
	elements, their properties and uses. Isotopes
	and radioactivity.
CLO-5	5. Electronic Theory of Valence and
	Chemical Bonding (8 lectures): Different
	types of bonds (ionic, covalent, co-ordinate,
	hydrogen and metallic) Classification of
	solids on the basis of bonding and their
	properties. Atomic orbitals and their
	hybridization; valence bond and Molecular
	orbital theories.
CLO-5	6. Chemistry of Transition Elements,
	Lanthanides and Actinides (7 lectures):
	Definitions, electronic configurations,
	preparations (nuclear transformations),
	general properties and uses.

Recommended Books:

Authors' name	Title
1. R. D. Madan	Modern Inorganic Chemistry
2. M. M. Haque and M. A. Nawab	Principles of Physical Chemistry
3. E. S Gilreath	Fundamental Concepts in Inorganic Chemistry
4. G. M. Barrow	Physical Chemistry
5. W. J. Moore	Physical Chemistry
6. K. J. Laidler and J.H. Meiser	Physical Chemistry
7. S. R. Palit	Elementary Physical Chemistry
8. S. Z. Haider	Modern Inorganic Chemistry
9. Companion	Chemical Bonding
10. Cotton, Wilkinson & Jones	Basic Inorganic Chemistry
11. D. K. Sebera	Electronic Structure and Chemical Bonding

Course Code: ENG1111Course Title: Technical and Communicative EnglishCourse Credit: 2Course Teacher(s):Announce to be later

Course Description: Technical and Communicative English is a part of the regular course and taught in the first year of the engineering degree. This course introduces Grammatical Principle, speaking, reading and writing section to develop communicative skill of the students.

Course Objective (Intended Learning Objectives, ILOs):

1. To develop and integrate the use of four language skills; listening, speaking, reading and writing abilities of the students.

Course Learning Outcome (CLO):

After successfully completion the course, students should be able to:

- 1. Use English effectively for academic purposes across the curriculum.
- 2. Communicate effectively and appropriately in real life situations.

Learning	Course content	Teaching-	Assessment	
Outcomes		learning strategy	Strategy	
CLO-1	1. Grammatical Principle: Sentences,	Lecture	Full Marks: 50	
	Tenses, Clauses, Connectors, Understanding	Exercise/Tutorial/	Attendance:10%	
	long Sentences, Conditional Sentences,	quiz	Tutorial/Quiz:20%	
	Transformation of Sentences, and Phrases:	Attendance	Exam: 70%	
	Noun phrases Adverbial phrases,			
	Prepositional phrases, Verb phrases,			
	Modifier, Head word, Appositives,			
	Determiners.			
CLO-1	2. Making words with adding suffix and prefix,			
	Phrase and idioms, Modal Verbs, Gerund,			
	Infinitive, Bear infinitives, Causative verbs,			
	Words of Negation.			
CLO-1,2	3. Spoken English: Greetings, Dialogues,			
	Responding to a Particular Situation,			
	Extempore speech.			
CLO-1,2	4. Reading: Comprehension of technical &			
	non-technical materials-skimming,			
	scanning, inferring & responding to context.			
CLO-1,2	5. Technical Writing: Paragraph &			
	composition writing on scientific & other			
	themes, report writing, research paper			
	writing, library references.			
CLO-1,2	6. Professional communication: Business			
	letter, job application, memos, quotations,			
	tender notice.			

Books Recommended:

2. John M. Lennon

Authors' name

<u>Title</u>

- 1. J. Thomson & A. V. Martinet
- A Practical English Grammar Technical Writing

3. A. Ashley

Oxford Handbook of Commercial Correspondence

4.	J. Swales	Writing Scientific English
5.	Robert J. Dixson	Complete Course in English
6.	Rajendra Pal & J. S. Korlahalli	Essentials of Business Communications

Course Code: MSE1112 Course Title: Qualitative and Quantitative Analysis of Materials Laboratory Course Credit: 2

Course Teacher(s): Announce to be later

Course Description: This lab. course is designed to demonstrate knowledge of analytical vocabulary, standard solutions, volumetric glassware, and dilution calculations and various gravimetric and volumetric titrations. This course will enhance the students' skill of basic quantitative and qualitative analytical techniques and help them to identify appropriate methods of sampling and sample preparation prior to analysis.

Learning		Course content	Teaching-	Assessment
Outcomes			learning strategy	Strategy
	1.	Acid-base titration, Oxidation-reduction	Lecture	Full Marks: 50
		titration, Precipitation titration, Complex	Exercise/Tutorial/	Attendance:10%
		metric titration and Gravimetric titration.	Quiz	Quiz, viva-voce and
	2.	Estimation of calcium and magnesium	Attendance	continuous
		from different compounds		assesment:30%
	3.	Estimation of zinc and copper form		Exam/Design
		analysis of brass.		work/Report: 60%
	4.	Analysis of Portland cement, insoluble		_
		silicate, limestone, water and some other		
		industrial products.		

Recommended Books:

Authors' name	Title
1. A.I. Vogel	A Text-book of Quantitative Inorganic Analysis

Course Title: Physical Chemistry Laboratory

Course Code: CHEM1112 Course Credit: 2

Course Teacher(**s**): Announce to be later.

Course Description:

Learning		Course content	Teaching-	Assessment
Outcomes			learning strategy	Strategy
	1.	Determination of cell constant of a	Lecture	Full Marks: 50
		conductivity cell.	Exercise/Tutorial/	Attendance:10%
	2.	Conductometric titration.	quiz	Quiz, viva-voce and
	3.	Potentiometric titration.	Attendance	continuous
	4.	Conductometric determination of degree of		assesment:30%
		dissociation.		Exam/Design
	5.	Construction of some electrodes and		work/Report: 60%
		measurement of their standard potentials.		
	6.	Determination of heat of capacity, heat of		
		solution, heat of neutralization,		
		equilibrium constant and energy of		
		activation.		
	7.	Determination of radius of a molecule by		
		viscosity measurement.		
	8.	Determination of the density and		
		coefficient of viscosity of a liquid.		
	9.	Determination of adsorptive power of an		
		absorbent and verification Langmuir		
		Isotherm.		

Recommended Books:

Authors' name

- 1. W.J. Popiel
- 2. J.B. Yadav
- 3. D.P. Shoemaker et al
- 4. A. Findlay J.N. Gurtu

Title

Laboratory Manual of Physical Chemistry Advanced Practical Physical Chemistry Experiment in Physical Chemistry Experimental Physical Chemistry Advanced Experimental Chemistry

First Year Second Semester Examination, 2024

Course Code: MSE1211 Course Credit: 2 Course Teacher(s): Announce to be later

Course Title: Crystallography - II

Course Description:

The objective of this course is to present the basic concepts needed to understand the crystal structure of materials. The chapter 1 is designed including different types of primary and secondary bonds that are exist in solid materials. A thorough description of a crystal is assigned in chapters 3 and 5 by the topics of lattice, basis, unit cell, crystal system, Atomic packing factor, lattice plane, lattice directions, and crystalline structure of metal, ceramics and polymer. Stereographic projection is included in chapter 3. Chapter 4 covers the topics of point group, space group and reciprocal lattice. Finally, the defects that are generally found in crystal are introduced in the last chapter.

Course Objective (Intended Learning Objectives, ILOs):

- 1. Define lattice, crystal system, point group, space group and reciprocal lattice.
- 2. Be familiar with the stereographic projection in crystallography.
- 3. To get fundamental knowledge about the crystal growth.

Course Learning Outcome (CLO):

After successfully completion the course the students should be able to:

- 1. Demonstrate the construction stereographic projection and the symmetry of crystal.
- 2. To get insight about the crystal growth techniques.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1	1. Crystal Symmetry: Point group and space	Lecture	Full Marks: 50
	group, centres and inversion axes of	Exercise/Tutorial/	Attendance:10%
	symmetry, crystal symmetry and properties,	quiz	Tutorial/Quiz:20%
	symmetry elements.	Attendance	Exam: 70%
CLO-1	2. Representation and Study of Crystals in Projection: Introduction, representation in two dimensions, stereographic projection and its construction, stereographic projection in small circle, stereographic net, use of stereographic projection in crystallography, gnomonic projection. five-plane lattice. Bravais lattices and crystal systems		
CLO-2	3. Reciprocal Lattices: Reciprocal lattice vectors, reciprocal lattice unit cells, geometrical relationships, reciprocal lattice cell for cubic crystal.		
	4. Growth of Crystal from Melt and Vapour:		
	Introduction, Preparation of single crystals		
	by Czochralski, Bridgeman and Stockbarger,		
	flux methods; Epitaxial growth and vapour		
	phase transport of single crystal, Electron		

beam deposition and MBE grow Sputtering and Spray-pyrolysis methods.
CLO-2 4. X-rays and X-ray diffractio Introduction, origins and characteristics X-rays, X-ray diffraction and Bragg's la Moseley's law, Laue equations, Methods diffraction- powder methods, single crys method, x-ray diffraction experiment Structure of crystals from X-ray diffraction

Recommended Books:

Authors' name

Title

5. F. Donald Bloss	Crystallography and Crystal Chemistry
6. C. Hammond	Introduction to Crystallography
7. R. West	Solid State Chemistry
8. L. V. Azaroff	Introduction to solids
9. D. McKie & C. Mckie	Crystalline Solids
10. A. Windle	A First Course in Crystallography
11. N.F. Kennon	The Structure in Crystals
12. F.C. Phillips	An Introduction to Crystallography
13. C. Kittle	Introduction to Solid State Physics

Course Title: Electricity and Magnetism

Course Code: PHY1221 Course Credit: 3 Course Teacher(s): Announce to be later

Course Description: It is one of the fundamental or core course of physics those who want to acquire fundamental electricity and magnetism knowledge and to link them up with their studies in fields like engineering, chemistry and mathematics. In this course fundamental laws of electricity, thermoelectricity and magnetism are discussed to know their applications in aspect of modern physics. Problems solving and analytical skills of students will have increased by studying this course. From this course the students will gain primary knowledge on electrical AC and DC circuits of parallel and series combinations as well.

Course Objective (Intended Learning Objectives, ILOs):

- 1. To deliver knowledge on the fundamental laws of physics based on electrostatics.
- 2. To deliver idea about parallel plate capacitors using dielectrics and Gauss's law.
- 3. To give knowledge on electric current based on theory of electron.
- **4.** To provide overall concept on electromagnetic induction using Faraday's and Ampere's law, traditional and functional ceramics, types and structural composition of ceramics.
- 5. To deliver knowledge on principles of thermoelectricity; DC and AC circuits of current in series parallel connections.
- 6. To provide techniques and knowledge how to analyze and solve physical problems with aids of mathematics.

Course Learning Outcome (CLO):

After successfully completion the course the students should be able to:

- 1. Know the theory of capacitance, and its application using dielectrics and Gauss law and the electron theory of conductors.
- 2. Know the use of Coulomb's law and Gauss' law for the electrostatic force and the relationship between electrostatic field and electrostatic potential.
- **3.** (a) Know the use of the Lorentz force law for the magnetic force and the use of Ampere's law to calculate magnetic fields.
 - (b) Know the use of Faraday's law in induction problems and laws of thermoelectricity.
 - (c) Know the basic laws that underlie the properties of electric circuit elements.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1	1. Capacitors: Parallel plate capacitors;	Lecture	Full Marks: 75
	dielectrics and Gauss's Law; susceptibility,	Exercise/Tutorial/	Attendance:10%
	permeability, and dielectric constant; energy	quiz	Tutorial/Quiz:20%
	stored in an electric field.	Attendance	Exam: 70%
CLO-2	2. Electrostatics: Electric dipole; electric field		
	due to a dipole; dipole on external electric		
	field; Gauss's Law and its applications.		
CLO-3	3. Electric Current: Electron theory of		
	conductivity; conductor, semiconductors		
	and insulators; superconductors, current and		
	current density.		
CLO-3	4. Electromagnetic Induction: Faraday's		
	experiment; Faraday's law; Ampere's law,		
	motional e.m.f.; self and mutual inductance		
	galvanometers-moving coil, ballistic and		
	deadbeat types.		

CLO-3	5. Thermoelectricity: Thermal e.m.f;
	Seebeck, Peltier and Thomson Effects; laws
	of addition of thermal e.m.f., thermoelectric
	power.
CLO-3	6. DC and AC Circuits: D.C. circuits with LR,
	RC, and LCR in series; A.C. circuits with
	LR, RC, LC, and LCR in series.

Recommended Books:

Authors' name

Title

1.	Acharyya	Electricity and Magnetism
2.	Admas& Page	Principles of Electricity
3.	Emran et al.	Text Book of Magnetism and Electricity
4.	Halliday & Resnick	Physics (Part-I & II)
5.	Kip	Fundamentals of Electricity and Magnetism
6.	Huq et al.	Concept of Electricity and Magnetism

Course Title: Differential and Integral calculus

Course Code: MATH1211 Course Credit: 3 Course Teacher(s): Announce to be later

Course Description: This course is designed to provide necessary background of differential and integral calculus. Different mathematical problems in this course will help the students building a comprehensive skill for analysing and solving real life engineering problems.

Course Objective (Intended Learning Objectives, ILOs):

- 1. Familiarize the students with introductory calculus
- 2. provide necessary background of differential and integral calculus.

Course Learning Outcome (CLO):

After successfully completion the course the students should be able to:

- 1. Understand the concept of function, limit and continuity and solve the limiting value problem.
- 2. Use different method to solve ordinary and partial differentiation.
- 3. Calculate the integral of definite and indefinite forms.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1	1. Functions: Domain, Range, Inverse	Lecture	Full Marks: 75
	function and graphs of functions, Limits,	Exercise/Tutorial/	Attendance:10%
	Continuity, Indeterminate form.	quiz	Tutorial/Quiz:20%
CLO-2	2. Ordinary Differentiation:	Attendance	Exam: 75%
	Differentiability, Differentiation, Successive		
	differentiation and Leibnitz theorem.		
CLO-2	3. a. Expansions of functions: Rolle's theorem,		
	Mean value theorem, Taylor's and Maclaurin's		
	formulae.		
	b. Maximum and minimum of functions of		
	one variable.		
CLO-2	4. a. Partial Differentiation: Euler's theorem,		
	Tangents and normal.		
	b. Asymptotes.		
CLO-3	5. Indefinite Integrals: Method of		
	substitution, Integration by parts, Special		
	trigonometric functions and rational		
	fractions.		
CLO-3	6. Definite Integrals: Fundamental theorem,		
	General properties, Evaluations of definite		
	integrals and reduction formulas.		
CLO-3	7. Multiple Integrals: Determination of		
	lengths, Areas and Volumes.		

Books Recommended:

Authors' name

- 1. B.C. Das and B.N.Mukherjee
- 2. B.C.Das and B.N. Mukherjee
- 3. F.Ayres
- 4. Edwards

- Title
- Differential Calculus Integral Calculus Calculus Differential Calculus

5. Williamson

- 6. Muhammad and Bhattacherjee
- 7. Muhammad and Bhattacherjee

Integral Calculus Differential Calculus Integral Calculus

Course Code: CHEM1211 Course Credit: 2 Course Teacher(s): Announce to be later

Course Description: This course is an introductory course in organic chemistry and intends to transmit basic knowledge of organic chemistry, which is required for the successful completion of other undergraduate courses of general background and/or specialization, such as materials chemistry, polymer chemistry/polymer materials and biomaterials.

Course Objective (Intended Learning Objectives, ILOs):

- 1. The students should able to develop basic skills for the multi-step synthesis of organic compounds and mechanism for a chemical reaction.
- 2. This course will help to understand the structure and reactivity of organic molecules, with examples illustrating the role of organic chemistry in industry.
- 3. They can apply chemical principles in the laboratory setting

Course Learning Outcome (CLO):

On completion of the course, the student should be able to:

- 1. Gather and recall the fundamental principles of organic chemistry that include purification, elemental analysis and bonding
- 2. Extend knowledge on nomenclature, preparation, properties, types of reactions and important uses of aliphatic hydrocarbons.
- 3. Understand the basic concept of biochemistry and stereochemistry of organic molecules.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1	1. General Concept: Purification of organic	Lecture	Full Marks: 50
	compounds, detection of elements in organic	Exercise/Tutorial/	Attendance:10%
	compounds. Bonding: Covalent bond	quiz	Tutorial/Quiz:20%
	$(\sigma \text{ and } \pi)$ formation in organic compounds,	Attendance	Exam: 70%
	hybridization of orbital (sp, sp ² and sp ³)		
CLO-2	2. Aliphatic: Nomenclature, preparation, properties, types of reactions and important uses of aliphatic hydrocarbons. Mechanism of reaction, and their homologous: alkyl halides, Grignard reagents, alchoholes, aldehydes ethers & ketones, carboxylie acids & their derivatives, alkyl amines.		
CLO-2	3. Alicyclic Compounds: Nomenclature, preparation and reactions of alicyclic compound cyclopropane, cyclobutane, cyclohexane and their derivatives, ring		

Course Title:Organic Chemistry

	formation and stability. Angle strain; Baeyer strain theory and its weakness, Sachse-Mohr modifications.	
CLO-2	4. Aromatic compounds: Structure of benzene (Kekule & resonance structure), aromaticity, mechanism of electrophilic and nucleophilic substitution, orientation and resonance; effects of the substituted groups in the mono- substituted benzene rings (activation & deactivation, orientation).	
CLO-3	5. Biochemistry: Definition & characteristics classification, structures, and reactions of amino acids (isoelectric points), proteins and carbohydrates.	
CLO-3	6. Stereochemistry: Stereoisomers. Asymmetric carbon atoms and optically active compounds; optical and molecular rotation. R and S configurations, optical and geometrical isomerisms of simple organic compounds.	

Recommended book(s):

Authors' name

1. R.T. Morrison & R. N. Boyd:

2. I. L. Finar:

- 3. Bhal&Bhal:
- 4. E. L. Eliel:
- 5. P. Sykes:
- 6. K. Barsal:
- 7. E.S. Gouldganic:

Title

Organic Chemistry Organic Chemistry Organic Chemistry Vol. I & II Sterechemistry of Carbon Compounds A Guide to Mechanism in Organic Chemistry Organic Reaction Mechanism Organic Reaction Mechanism

Course Title: Industrial Economics

Course Code: ECON1211 Course Credit: 2 Course Teacher(s): Announce to be later

Course Description: The content of this course include the concept of demand, supply and consumer behaviour, micro and macroeconomics, GDP, GNP budget and development planning. Additionally, the course also covers topics such as depreciation, income tax analysis, inflation, deflation, and estimation of future events.

Course Objective (Intended Learning Objectives, ILOs):

- 1. The goal of this course is to provide the student with advanced concepts of engineering economic analysis and its role in engineering decision making.
- 2. It is designed to make the students realize the effect of the time value of money on engineering problem solving and the capacity to act with ethical and efficient professionalism.

Course Learning Outcome (CLO):

After successfully completion the course the students should be able to:

- 1. Acquire knowledge on the economic analysis, feasibility and evaluation of enterprises and projects.
- 2. Make an economic analysis of an investment and employ concepts such as, Rate-On-Return, Net Present Value, Break-Even analysis, all these, with special application on the design and operation of engineering projects.
- 3. Realize the theoretical and conceptual basis of upon which engineering projects analysis is built.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1	1. Basic Concepts of Economics: Definition	Lecture	Full Marks: 50
	and subject matter of Economics;	Exercise/Tutorial/	Attendance:10%
	Microeconomics vs macroeconomics; Law	quiz	Tutorial/Quiz:20%
	of Economics; Central economic problems	Attendance	Exam: 70%
	of every society; Different economic		
	systems; Economics and Engineering.		
CLO-1&2	2. Theory of Demand, Supply and		
	Consumer Behaviour: Law of Demand;		
	Demand schedule and demand curve; Supply		
	law, Supply schedule and supply curve; Shift		
	in demand and supply; Equilibrium in the		
	market; Elasticity of demand and supply		
CLO-2&3	3. Production and Costs and Theory of the		
	Firm: Meaning of production; Factors of		
	production; Concepts of total, average and		
	marginal costs, fixed and variable costs.		
CLO-2	4. Theory of the Firm: Perfect competition		
	and monopoly; Total, average and marginal		
	revenue of a firm; Average and marginal		
	revenue under perfect competition and		
	monopoly; Firm's Equilibrium; Equilibrium		
	of firm under perfect competition and		
	monopoly.		
CLO-3	5. The Input-Output Analysis: Meaning of		
	input-output analysis; Input-output analysis		

	model; balance equation; coefficient matrix;
	Determination of final demand vector.
CLO-1&2	6. Basic Concepts of Macroeconomics:
	Growth; Unemployment; Inflation; Philips
	Curve, Business cycle; Circular flow of
	economics; Two, three and four sector
	economics.
CLO-1&2	7. National Income accounting and
	determination: Concepts of GNP, GDP and
	national income; Methods of national
	income accounting; Problems of national
	income accounting; Keynesian model of
	national income determination; The
	multiplier; Effect of fiscal policy in the
	Keynesian model.
CLO-1&2	8. Budgets of Bangladesh: The revenue at the
	capital budget; Income, expenditure of the
	government; direct and indirect taxes.
CLO-1&2	9. Development Planning in Bangladesh:
	Need for planning in Bangladesh; Various
	five year plans in Bangladesh; Development
	strategies in the five year plans of
	Bangladesh.

Books Recommended:

Authors' name

Title

1.	Semuelson and Nordhous	Economics
2.	Byrons and Stone	Economics
3.	Dewett, K. K.	Modern Economic Theory
4.	Ahuja, H. L.	Advanced Economic Theory
5.	Government of Bangladesh	Various Five Year Plans

Course Title: Crystallography Laboratory

Course Code: MSE1212 Course Credit: 2 Course Teacher(s): Announce to be later

Course Description: This course designed to develop strong fundamentals of crystal structure. Students will be able to identify different crystal system and calculate the density of the crystal. The will gain the knowledge to find out lattice parameter and defect phase from the XRD pattern of a particular material.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
	1. Concept of Unit and dimensions.	Lecture	Full Marks: 50
	2. Familiar with different crystal systems.	Exercise/Tutorial/	Attendance:10%
	3. Identification of different crystal	quiz	Quiz, viva-voce and
	structures.	Attendance	continuous
	4. Calculation of compactness of different		assesment:30%
	structures.		Exam/Design
	5. Determination of different phases of		work/Report: 60%
	materials from diffraction intensity profile.		_
	6. Determination of lattice parameter.		

Suggested Reading Lists/Essential Readings

Course Code: MSE1222Course Title: Engineering Drawing LaboratoryCourse Credit: 2Course Teacher(s):Announce to be later

Course Description: The central issue of this course is to help students to visualize the basics of engineering design and drawing. It is also expected to improve hands-on experiences towards their practical life.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
	Introduction to engineering drawing, Lettering	Lecture	Full Marks: 50
	and uses of drawing instruments, Concept of	Exercise/Tutorial/	Attendance:10%
	projection, first angle and third angle	quiz	Quiz, viva-voce and
	projection, Orthographic drawing,	Attendance	continuous
	Axonometric projection, Pictorial drawing:		assesment:30%
	Oblique, isometric and perspective drawing,		Exam/Design
	Sectioning, Dimensioning, Introduction to		work/Report: 60%
	Roller cad drawing.		_

Suggested Reading Lists/Essential Readings
Course Code: ME1232 Course Credit: 2 Course Teacher(s): Announce to be later

Course Title: Mechanical Engineering Workshop

Course Description: This Lab. course introduced to make the students familiar with basic mechanical engineering tools.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
	1. Familiar with engineering tools.	Lecture	Full Marks: 50
	2. Study of grinding, milling and drill	Exercise/Tutorial/	Attendance:10%
	machine.	quiz	Quiz, viva-voce and
	3. Cutting, filing and polishing of solid	Attendance	continuous
	materials		assesment:30%
	4. Study of lathe machine and Preparation of		Exam/Design
	Nut, bolt and different solid bodies.		work/Report: 60%

Suggested Reading Lists/Essential Readings

Second Year First Semester Examination, 2025

Course Code: MSE2111Course Title: Phase Diagram and Microstructure of MaterialsCourse Credit: 3Course Teacher(s):Announce to be later

Course Description: The course introduced to gather knowledge and understanding of phase equilibria and non-equilibria diagrams and properties of metals, ceramics and alloys, which controlled by their thermal history. The students will also know basic materials research in such fields as solidification, crystal growth, joining, solid-state reaction, phase transformation, oxidation, etc. They will also get idea on materials design and process to achieve the desired microstructures.

Course Objective (Intended Learning Objectives, ILOs):

- 1. To provide a guideline about the various crystal growth techniques with their common features.
- 2. The purpose of this curricular unit is to use phase equilibrium diagrams to develop an understanding of the phase transformations and the interpretation of the microstructural evolution of the alloys.
- **3.** To deliver idea on phase equilibrium diagrams related to equilibrium state and microstructure, which are useful to understand non-equilibrium structures, that are often more desirable than those of equilibrium states due to the higher level of properties attained.
- **4.** To introduce materials of interest range from single to multi-component systems including chemical and geometrical structure as well.
- **5.** To provide knowledge about many industrial important systems that can be adequately represented by binary equilibrium diagrams, ternary or higher order diagrams are often necessary to the understanding of more complex systems, like certain industrial alloys, slag, polymeric or ceramic materials.

Course Learning Outcome (CLO):

After successfully completion the course the students should be able to:

- 1. Acquire theoretical knowledge on numerous crystal growth techniques and importance's of phase diagrams in the field of materials science and engineering.
- 2. Know the relations between the composition, temperature and phase amounts, phase rule concept of different system and the understanding about the formation of microstructure and how this structure influences materials properties.
- 3. Know the applications of phase diagrams and able to analyze their crystal structure.
- 4. Know the metallographic features of metals and alloys with their microstructure.

Learning	Course content	Teaching-learning	Assessment
Outcomes		strategy	Strategy
CLO-1	1. Phase Diagrams: Phase and phase equilibria,	Lecture	Full Marks: 75
	Gibbs phase rule, binary isomorphous system	Exercise/Tutorial/	Attendance:10%
	- interpretation of phase diagram,	quiz	Tutorial/Quiz:20%
	determination of compositions & phase	Attendance	Exam: 70%
	amounts, binary eutectic systems equilibrium		
	diagrams having intermediate phases,		
	congruent phase transformations.		
CLO-2 &	2. Binary Phase Diagrams of Alloy Systems:		
3	Iron-iron carbide phase diagram,		
	development of microstructure in iron-carbon		
	alloys, hypo-eutectoid alloys, hypereutectoid		
	alloys, non-equilibrium cooling, and the		
	influence of other alloying elements.		

CLO-2 & 3	3. Microstructure of Materials: Development	
	of microstructure in isomorphous and	
	eutectic alloys, equilibrium diagrams having	
	intermediate phases.	
CLO-2 & 3	4. Metallography: Function of metallurgical	
	microscope, Preparation of specimens for	
	microstructure study, Microstructure of metal	
	and alloys, Sulphur print, phosphorous print.	
CLO-4	5. Study the phases and microstructure of non-	
	ferrous metal and their alloys. Cu, Al, Ni, and	
	their alloys.	

Books Recommended:

Author's Name

- 1. William D. Callister
- 2. William F. Smith
- 3. R. E. Smallman & R. J. Bishop
- 4. Sidney H Avner
- 5. J. C. Anderson et al.
- 6. R E Smallman
- 7. Dr O P Khanna

Title

Materials Science & Engg. –An Introduction Foundation of Materials Science & Engg Metals and Materials Introduction to Physical Metallurgy Materials Science Modern Physical Metallurgy A text book of Materials Science and Metallurgy

Course Title: Construction Materials

Course Code: MSE2121 Course Credit: 2 Course Teacher(s): Announce to be later

Course Description: First part of this course is basic building stones, building stones materials, and second part the preservation of wood and processing, and cement, concrete: This course introduces construction materials. Topics covered in basic construction materials, Building Stones, Bricks, Tiles, Terra cotta and other clay products and Asphalt, Bitumen and Tar.

Course Objective (Intended Learning Objectives, ILOs): This course intended to be an introduction to the main construction materials currently used in industry and the building materials.

Course Learning Outcome (CLO):

After successfully completion, the course the students should be able to:

- 1. Explain the fundamentals of construction materials, their classifications and applications
- 2. Identify the quality of construction materials of using suitable component as a construction.
- 3. Illustrate principle and using of the different clay product as construction materials.
- 4. Select the suitable preservation technique for preserving construction materials.

Learning	Course content	Teaching-learning	Assessment
Outcomes		strategy	Strategy
CLO-1	1. Building Stones: Introduction,	Lecture	Full Marks: 75
	Classification of Rocks, Common rock	Exercise/Tutorial/	Attendance:10%
	forming minerals, Characteristics of good	quiz	Tutorial/Quiz:20%
	building stones, uses of stones and their	Attendance	Exam: 70%
	selection, Deterioration and preservation of		
	stones, testing of stones, common building		
	stones, their composition, properties, uses		
	and occurrence, Artificial stones.		
CLO-2	2. Bricks, Tiles, Terra cotta and Other clay		
	products: Introduction, Bricks, composition		
	of brick earth, properties of good brick earth,		
	analysis of some brick earth, test of clay,		
	brick making, strength of bricks, Quality of		
	good bricks, Fireclay and firebricks,		
	Strength of refractory bricks, color of bricks,		
	Testing of bricks, Tiles, Terra cotta,		
	porcelain.		
CLO-3	2. Asphalt, Bitumen and Tar: Definition,		
	properties, uses, constituents and types of		
	asphalt, Definition, properties, uses and		
	forms of bitumen, Definition, properties,		
	uses and types of tar, pitch, comparison		
	between asphalt, bitumen and tar.		
CLO-4	3. Wood Seasoning and Preservation: Wood		
	seasoning methods, relative suitability's of		
	different seasoning methods, seasoning		
	defects and their prevention, objects and		
	benefits of seasoning; methods of		
	preservative treatments, non-pressure and		

Suggested Reading Lists/Essential Readings

Author's Name

Title

1.	K. P. Roy Chowdhury	Engineering Materials
2.	R. K. Rajput	Engineering Materials
3.	W. H. Brown	Introduction to the Seasoning of Timber
4.	G. M. Hunt	Wood Preservation
5.	F. P. P. Kollman & W. P. Cote	Principles of Wood Preservation Science & Technology

Course Code: MSE2131 Course Credit: 3 Course Teacher: Announce to be later Course Title: Electronic Properties of Materials

Course Description: This course offers the students to understand the physical principles underlying the electronic properties of solids, in term of quantum physics application. It covers the fundamental properties of semiconductor, including atomic structure, energy band and electronic state in solids, charge transport phenomena and pn junction. The course will enhance the students' ability to applying this knowledge in solving a wide range of problems originating in part in semiconductor research.

Course Objective (Intended Learning Objectives, ILOs):

At the end of this course students should be able to:

- **1.** Explain the behavior of electron as particle or wave.
- 2. Introduce energy band theory of semiconductor.
- 3. Know fundamental properties of semiconductor materials.

4.Gain knowledge about carrier transport mechanism

Course Learning Outcome (CLO):

After successfully completion the course the students should be able to:

- 1. develops understanding of the fundamentals of energy band theory.
- 2. Can utilize the knowledge of drift and diffusion mechanism in particular device application as for example of photodetector.
- **3.** can apply the knowledge in solving a wide range of problems originating in part in semiconductor research.

Learning Outcomes	Course content	Teaching-learning strategy	Assessment Strategy
	1. Energy Level and Spectra: Introduction;	Lecture	Full Marks: 75
	Atomic model, The single electron system;	Exercise/Tutorial/	Attendance:10%
	Electron states in atoms; Energy spectra in	quiz	Tutorial/Quiz:20%
CLO-1	atoms, Correspondence principle, atomic	Attendance	Exam: 70%
	excitation, origin of adsorption and		
	emission spectra, wave, particle and its		
	duality.		
	2. Energy Bands in solids: Introduction,		
	Energy bands in metals, semiconductors		
CL 0-1	and insulators, Schrödinger equation,		
CLO I	The Bloch theorem, The Kronig Penney		
	model, Effect of temperature & Pressure		
	on energy band gap.		
	3. Electrons in a crystal: Fermi level &		
	Fermi surface, Fermi-Dirac Distribution,		
	Density of states, Population density;		
	complete density of states function		
	within a band, consequences of the band		
	model.		
	4. Properties of semiconductor: Intrinsic		
CLO-2	and Extrinsic Semiconductors, Carrier		
	Transport Phenomena, Hall Effect,		

	Compound Semiconductors		
	Semiconductor Devices.		
	5. Electrical Properties in Metals and		
	Alloys, Polymers, Ceramics		
	Dielectrics and Amorphous Materials		
	Conductivity-Classical and Quantum		
	Mechanical Considerations		
CLO-1	Thermoelectric Phenomena, Conducting		
	Polymers, Dielectric Properties		
	Ferroelectricity, Piezoelectricity		
	Electrostriction, Pyroelectricity and		
	Amorphous Materials.		

Authors' Name

- 1. Donald A. Neamen
- 2. Rolf E. Hummel
- 3. H. C. Gupta
- 4. M. Ali Omar
- 5. K. J. Pascoe
- 6. P. Bhattacharya

Title

Semiconductor Physics & Devices Electronic Properties of Materials Solid State Physics Elementary Solid State Physics Properties of Engineering Materials Semiconductor Optoelectronic Devices

Course Title: Matrices and Differential Equations

Course Code: MATH2111 Course Credit:3 Course Teacher: Announce to be later

Course Description: This course introduces the topics of differential equations: first order and second order and the path to solve the equation.

Course Objective (Intended Learning Objectives, ILOs):

The objective of this course is to understand the formation, solution and application of differential equation.

Course Learning Outcome (CLO):

After successfully completion the course the students should be able to:

- 1. To understand the concept of different matrices, their transformation and properties
- 2. To calculate eigenvalue and eigenvector of a system using matrices
- 3. To analyze and apply the different order differential equation and find the solution of the equation

Learning Outcomes	Course content	Teaching-learning strategy	Assessment Strategy
	1. Algebra of Matrices: Adjoint, Inverse	Lecture	Full Marks: 75
CLO-1	and rank of matrix-definition, Properties	Exercise/Tutorial/	Attendance:10%
	and evaluation.	quiz	Tutorial/Quiz:20%
	2. Elementary Transformations: Echelon:	Attendance	Exam: 70%
	Canonical and normal forms, Solution of		
	system of linear equations, Consistency		
	and solution of homogeneous and		
	nonhomogeneous systems by matrix		
	method, and reduction to equivalent		
	system.		
	3. Characteristic Equation: Eigenvalues,		
CIO_{-2}	Eigenvectors and Caley-Hamilton		
CLO-2	theorem, similar matrices and		
	diagonalization.		
	4. Solutions of first order and first degree and		
CLO-3	first-order and higher degree equations		
	with variable coefficients.		
CLO-3	5. Solution of Higher-Order linear		
010 5	differential equations.		
	6. Differential Equations: Series solution of		
	linear differential equation, Series solution		
	of second order equation with variable		
CLO-3	coefficients, Solutions of partial		
	differential equation, Laplace's equation		
	and transformation, Poisson's equation,		
	Helmholtz's equation, Diffusion equation,		
	Green's function solution, Integral		
	equation.		

Recommended book(s): Authors' name Title 1. M. L. Khanna Matrices 2. S. L. Ross Introduction of Ordinary Differential Equations Theory and problems of Matrices 3. F. Avres 4. Moduffe Theory of Matrices **Differential Equations** 5. F. Ayres 6. B. D. Sharma **Differential Equations** App. Mathe. For Engineers and Physicist 7. L. Pipes 8. I. S. Sokolnikoff & R.M.Redheffer Math. For Physics and Modern Physics

Course Code: PHY2111 Course Credit: 3 Course Teacher(s): Announce to be later

Course Title: Basic Electronics and Instrumentations

Course Description: This is an introductory course that covers electricity and electronics fundamentals, math principles and applications, numbering systems and codes, taking standard measurements, electronic components, circuits and applications. It provides students with an understanding of computer electronics and methods of analyzing circuits, the use of circuit models to solve electrical problems, and the applications of circuit techniques to semiconductor and discrete components. Students will cover topics in circuits, producing electricity, semiconductors and integrated circuits, wiring, testing, the information age, and electricity and electronics at work. It also covers average value calculation and measurement of different waveforms to achieve their effective values, phase measurements, rise and fall time measurement of pulse wave forms using an oscilloscope.

Course Objective (Intended Learning Objectives, ILOs):

- 1. To understand operation of semiconductor diodes including DC analysis and AC models of semiconductor devices.
- **2.** (a) To apply concepts for the design of Regulators and Amplifiers and transistor-amplifiers in different configurations.

(b)To understand the operation and design of transformer coupled various types of power amplifier circuits.

- **3.** To understand the principle of feedback signal and effects of negative and positive feedback on amplifier circuits.
- **4.** To introduce the students with digital numbering system and designing of logic gates using algebraic laws.
- 5. To understand the operation of oscilloscope to determine the frequency of oscillation and spectra of measured data.

Course Learning Outcome (CLO):

After successful completion of the course student will be able to:

- 1. Understand the current voltage characteristics of semiconductor devices, and analyze dc circuits and relate ac models of semiconductors with their physical operation.
- 2. (a) Able to design Bipolar junction transistor and transistor-amplifies in various configuration.
 (b) Know the concept of feedback amplifier and their characteristics and design the different oscillator circuits for various frequencies.

(c) Solve the problems using Flip-Flop circuits based on binary codes and design of logic gates.

3. Design the different oscillator circuits for various frequencies and analysis of data from spectroscopic measurements as well.

Learning Outcomes	Course content	Teaching-learning	Assessment Strategy
CLO-1	1. Semiconductor Diodes: n-and p-type	Lecture	Full Marks: 75
	semiconductors, p-n junction diodes and	Exercise/Tutorial/	Attendance:10%
	their volt-ampere characteristics, Zener	quiz	Tutorial/Quiz:20%
	diode, half-and full wave rectifiers,	Attendance	Exam: 70%
	voltage regulation using Zener diodes.		
CLO-2	2. Bipolar Junction Transistors: PNP and		
	NPN Transistors: Construction and		
	Operations, DC characteristics of CE, CB		
	and CC configurations and transistor		
	amplifiers in different configuration.		
CLO-2	3. Feedback and Oscillators: Principles of		
	feedback, positive and negative feedback,		
	oscillators: RC, Hartely and Colpitt's		
	oscillator.		
CLO-2	4. a) Number Systems: Decimal, Binary,		
	Octal and Binary codes.		
	Logic gates: OR AND NOT NOR		
	NAND Fx-OR and Fx-NOR operations		
	and their truth tables. Laws of Boolean		
	algebra. De-Morgan's theorems.		
CLO-2	5. Flip-Flops : RS, D, T and JK Flip-Flops.		
CLO-2&3	6. Instrumentations: Oscilloscope, pH-		
	meter, GM and Scintillation counters;		
	AVO meter.		

Authors' Name

- 1. Grob, B.
- 2. Gupta, SL and Kumar, V.
- 3. Boylestad, RL and Nashelsky, L.
- 4. Mehta, VK.
- 5. Malvino, AP
- 6. Tocci, RJ.

Title

Basic Electronics Handbook of Electronics Electronic Devices and Circuit Theory Principles of Electronics Electronic Principles Digital Systems Course Title: Industrial Management & Accountancy

Course Code: ACCO2111 Course Credit:2 Course Teacher: Announce to be later

Course Description:

Course Objective (Intended Learning Objectives, ILOs):

Course Learning Outcome (CLO):

Learning	Course content	Teaching-learning	Assessment
Outcomes	Course content	strategy	Strategy
	1. Industry: Commerce-Industry: Meaning	Lecture	Full Marks: 50
	& Characteristics of Industry, Types of	Exercise/Tutorial/	Attendance:10%
	Industry; Business: Meaning &	quiz	Tutorial/Quiz:20%
	Objectives of Business, Types of	Attendance	Exam: 70%
	Business: Sole Proprietorship,		
	Partnership, Joint Stock Company, State		
	Enterprise and Cooperative Society.		
	2. Fundamentals of Management:		
	Meaning of Management, Principles of		
	Management, Functions of Management,		
	Levels of Management, Roles of		
	Management, Scientific Management and		
	Core Management skills.		
	3. Factory Location and Plant Layout:		
	Factors Determining Location of Factory,		
	steps in Location, Factors Influencing		
	Layout, Types of Layout, Problems of		
	Layout.		
	4. Work-Environment and Plant Utility:		
	Meaning, Importance, Factors Affecting		
	Work Environment, Plant Utility,		
	Lighting, Ventilation, Air-conditioning,		
	Sanitation and Noise Control.		
	5. Sole Proprietorships : Features,		
	Advantages, Disadvantages of Sole		
	Proprietorship, Sustainability of Sole		
	proprietorships.		
	6. Man Power Planning & Motivation:		
	Need, Objectives, Manpower Planning		
	Process, Recruitment, Selection and		
	Training, Issue in Managing People,		
	Maslow's Need Hierarchy, Social Needs		
	and Productivity, Hygiene and		
	Motivators.		
	7. Conflict & Union Management		
	Perspective: Meaning, Process of		
	Conflict, Types of Conflict, Industrial		
	Conflict Resolution Methods,		
	Negotiation Skills, Growth of Trade		
	Unions, Functions, Structure, Leadership		

and Management in the Trade Union,	
Collective Bargaining.	
8. Accountings: History, Scope and Nature	
of Accounting, Purpose of Accounting,	
Information and Uses.	
9. Transaction: Meaning and Features,	
Accounting Equation, Meaning and	
Classification of Account, Double entry	
System, Rules for Determining Debit and	
Credit, Accounting cycle.	
10.Journal, Ledger and Trial Balance:	
Meaning, Features, Necessity, Rules,	
Double and Triple Column Cash Book	
and Practical Problems.	
11.Work Sheet: Meaning, Purpose,	
Adjustment Entries and 10 Columns	
Work Sheet.	
12.Cost Terms Concepts and	
Classification: Meaning of Cost,	
Manufacturing and Non-Manufacturing	
Costs, Period and Product Costs, Variable	
and Fixed Costs, Direct and Indirect	
Costs, Differential, Opportunity and Sunk	
Costs, Schedule of Cost of Goods	
Manufactured, Schedule of Cost of Goods	
Sold and Income Statement.	
13.Cost-Volume-Profit Relationship:	
Contribution Margin and Ratio, Break-	
even Analysis, CVP relationship in	
Graphical Form and Target Net Profit	
Analysis.	

Authors' name

- 1. M. C. Shukla
- 2. Harold Koontz and Heinz Weihrich
- 3. Krajewski and Ritzman
- 4. David A. Decenzo and Stephen P. Robbins
- 5. Afzal A. Rahman
- 6. HermansonEtar
- 7. Ray H. Garrison

Title

Business Organization and Management Management Operation Management Human Resource Management Managing Conflict in Organization Accounting Principles Managerial Accounting

 Course Code: MSE2112
 Course Title: Metallography and Microstructure Laboratory

 Course Credit: 2
 Course Teacher(s):

 Announce to be later

Laboratory course Description/objective:

	Course content	Teaching-learning	Assessment
		strategy	Strategy
1.	Selection and preparation of micro, and macro-	Lecture	Full Marks: 50
	specimens.	Exercise/Tutorial/	Attendance:10%
2.	Microstudy of common ferrous, non-ferrous metals	quiz	Quiz, viva-voce and
	and alloys.	Attendance	continuous
3.	Microstudy of plain carbon steels, cast irons and		assesment:30%
	MS rebar.		Exam/Design
4.	Determination of micro-hardness of different		work/Report: 60%
	phases.		_
5.	Study of microstructure of martensitic and		
	annealed steel.		
6.	Microstructure of composite materials.		
	Quantitative metallography: grain size, volume		
	fraction, aspect ratio, particle size distribution, etc.		
7.	Quantitative metallography: grain size, volume		
	fraction, aspect ratio, particle size distribution, etc.		

Suggested Reading Lists/Essential Readings

Course Code: PHY2112 Course Credit: 2 Course Teacher(s): Announce to be later

Course Title: General Physics Laboratory

Laboratory course Description/objective:

	Course content	Teaching-learning	Assessment
		strategy	Strategy
1.	Determination of the viscosity of a liquid.	Lecture	Full Marks: 50
2.	Determination of the surface tension.	Exercise/Tutorial/	Attendance:10%
3.	Determination of the galvanic resistance	quiz	Quiz, viva-voce and
	(half deflection method).	Attendance	continuous
4.	Determination of the figure of merits.		Exam/Design
5.	Measurement of high resistance.		work/Report: 60%
6.	Measurement of low resistance by the		
	method of fall of potential.		
7.	Determination of end-correction of a metre		
	bridge wire.		
8.	Measurement of resistance per unit length of		
	a metre bridge wire.		
9.	Determination of the specific resistance of a		
	wire.		
10.	Calibration of a metre bridge wire.		
11.	To study the variation of reactance due to L		
	and C with frequency.		
12.	Determination of resonance frequency in		
	LCR circuit (series and parallel).		
13.	To study the characteristics of p-n junction		
	diode		

Suggested Reading Lists/Essential Readi]ngs

Second Year Second Semester Examination, 2025

Course Code: MSE2211 Course Credit:2 Course Teacher: Announce to be later Course Title: Materials Thermodynamics and Kinetics

Course Description:

This course has two parts with Thermodynamics and Kinetics of materials. First part of this course is thermodynamics of materials and second part also the kinetics. The first component, thermodynamics, includes laws of thermodynamics (0^{th} , 1^{st} , 2^{nd} and 3^{rd} laws of thermodynamics), solution theory and equilibrium diagrams. The second component, kinetics, includes thermodynamic relation, phase transformations, and kinetic theory of gasses.

Course Objective (Intended Learning Objectives, ILOs):

This course is intend to develop an understanding of the fundamental thermodynamic and kinetic processes in materials. Students will develop skill sets needed to evaluate the stability of materials under different external conditions.

Course Learning Outcome (CLO):

After successful completion of the course student will be able to:

- **1.** To develop an understanding of the fundamental thermodynamics lows of materials.
- **2.** Evaluate the suitability of using the materials under different external conditions.
- **3.** Illustrate principle and evaluation of using heat transfer in different process, reversible and irreversible process and Carnot cycle.
- **4.** To develop an understanding of the fundamental kinetic processes in materials.

Learning	Course content	Teaching-	Assessment Strategy
Outcomes	Course content	learning strategy	
	1. Introduction: Scope of thermodynamics;	Lecture	Full Marks: 50
	Thermodynamics systems and	Exercise/Tutorial/	Attendance:10%
CLO-1	equilibrium; zeroth law;	quiz	Tutorial/Quiz:20%
	Thermodynamics process; Internal	Attendance	Exam: 70%
	energy; Equations of state.		
	2. First law of thermodynamics:		
	Statement of first law of		
	thermodynamics; Thermodynamics		
CLO-1	cycles; Work in difference process;		
	Isothermal and adiabatic equation;		
	Concept of enthalpy.		
	3. Second and Third laws of		
	thermodynamics: Statement of second		
	law; Carnot's cycle and Carnot's		
CI 0 18-2	theorem; Heat engine; Concept of		
CLO-1&2	entropy; Changes of entropy in reversible		
	and irreversible process; Entropy		
	temperature diagram, Third law of		
	thermodynamics.		
	4. Thermodynamics relation:		
CLO-3	Thermodynamics potential functions;		
	The Maxwell's relations; Joule –		

	Thomson effect; Chemical potential; Phase equation and phase rule; Phase transitions. Degree of Freedom Phase
	diagram of Water, One component
	system.
	5. Kinetic theory of gas: Introduction,
	Fundamental assumptions in the kinetic
CLO-4	theory, kinetic gas equation, Total kinetic
	energy from kinetic gas equation, The
	root mean square velocity.
	6. Thermodynamics in materials: The
	effect of temperature on metal crystals;
	The specific heat curve and
	transformations; Heat content and free
	energy; Free energy of transformation;
CLO-4 & 5	The variation of free energy with
	temperature and polymorphism; Relation
	between free energy and work function,
	Thermodynamics of lattice defects; The
	mechanism of phase changes; Thermo
	dynamical Statistics.

Recommended book(s): <u>Authors' name</u>

Title

1. T. Hossain	Text book of heat
2. Brizlal	Heat and Thermodynamics
3. R. E. Smallman	Modern Physical metallurgy

Course Code: MSE2221 Course Title: Materials for Energy Conversion and Storage Course Teacher: Announce to be later

Course Description: This course targets students to give a sound knowledge about engineering materials that are used to the field of renewable energy conversion and storage systems. Particular relevance is given to energy storage materials for primary cells, secondary cells and fuel cells and also energy conversion materials for solar cell, bioconversion cells. This course covers fundamental properties of materials and performance characterization, pack design, system integration, control, diagnostics and, safety energy conversion devices.

Course Objective (Intended Learning Objectives, ILOs):

- 1. This course will help the students to understand the importance of the implementation of renewable energy sources.
- 2. Students will learn the fundamental electrochemical, optoelectronic and thermodynamic properties of materials used for energy conversion and storage devices.
- **3.** The course will enhance the students' capability to design and select appropriate materials for a particular energy device.

Course Learning Outcome (CLO):

At the end of the course, students should be able to

- **1.** Classify the source of energy
- 2. Design and enhance the performance of different types of cells for energy conversion and storage.
- **3.** a. Gain an insight of the basic principle of photovoltaic (PV) system and advance PV system by improving design and selecting appropriate materials.
 - b. known the photosynthesis process and use biomass for energy generation by bioconversion process.

Learning	Course content		Teaching-	Assessment Strategy
Outcomes			learning strategy	
	1.	Sources of Energy: Introduction, Type	Lecture	Full Marks: 50
$CI \cap 1$		of energy Sources, Conventional and	Exercise/Tutorial/	Attendance:10%
CLO-1		Non-Conventional Energy, Energy	quiz	Tutorial/Quiz:20%
		storage and Conversion.	Attendance	Exam: 70%
	2.	Electro-chemical Cells: Leclanche cell		
		- construction, shelf life, cell reactions &		
		performance; flat type dry Leclanche		
CIO2		cell; magnesium dry cell; air-depolarised		
CLO-2		cell; various oxide-depolarised cells;		
		lead-acid accumulator – construction,		
		capacity, efficiency, cell reactions;		
		Lithium-ion batteries, lithium polymer		
		batteries.		
	3.	Fundamentals of Fuel Cells: Direct and		
		indirect energy conversion; fuel cells and		
		related systems; air-depolarised fuel		
CLO-2		cells, electrode processes; choice of cell		
		reactions; thermodynamic efficiency of		
		fuel cells; electromotive force of fuel		
		cells; rates of electrode processes.		

		Temperature dependent Fuel Cells,
		Application of tuel cell systems and
	4	Tuture of the fuel cells.
	4.	Materials for Solar Energy
		Conversion: Introduction, solar
		radiation; selective surface for solar
		energy conversion, characteristics of
		surface, types of solar selective
CLO-2, 3a		reflection materials propagation of
		selection materials, preparation of
		methods of contings Photovoltain
		system: Photovoltaic devices
		principles of photovoltaic design of
		philopes of photovoltaic, design of
	5	Pioconvortion and Piomoss
CLO 3b	5.	Introduction Photosynthesis Biogas
		Generation Digester and their Designs
CLO-30		Materials for Biogas and Biomass and
		Their application
	6	Pyrolysis of biomass: Introduction
	0.	types of pyrolysis pyrolysis product
CLO-3h		nyrolysis kinetics types of nyrolyzer
CLO 50		heat transfer in a pyrolyzer, pyrolyzer
		design, biochar.

Authors' name

<u>Title</u>

1.	E. C. Potter	Electrochemistry
2.	G.W. Vinal	Storage Batteries
3.	A. McDougall	Fuel Cells
4.	K.R. Williams	An Introduction to Fuel Cells
5.	B.L. Theraja	Basic Electronics Solid State
6.	C.D. Rai	Solar Energy Utilization
7.	Prabir Basu	Biomass Gasification, Pyrolysis and Torrefaction

Course Title: Electrical Engineering

Course Code: EEE2211 Course Credit:3 Course Teacher: Announce to be later

Course Description: This course focuses to develop knowledge, basic concepts and building blocks of electrical circuits. It is a base in circuit theory. It is engineer's fundamental tool in electrical study. Students will understand fundamental laws, principles and phenomena in the area of electrical engineering. They will be enable to apply the acquired knowledge and skills to learn complex machine systems like transformer, generator and motor which will help them to their professional and practical life.

Course Objective (Intended Learning Objectives, ILOs):

- 1. This course will help the students to understand the basic electrical circuit quantities and theoretical understanding of A.C and D.C circuits system.
- 2. Students will learn different analytical process to solve complex circuit A.C and D.C circuit and Machine system.
- 3. The course will enrich the students' capability to handle electrical circuit as well as A.C and D.C machine system in their daily life as well as in work place.

Course Learning Outcome (CLO):

- 1. Know basic characteristics of electrical quantities, circuit terminology and associated problems
- 2. Understand basic circuit laws, and circuit theorems for DC network to analyze complex circuits problems and their solution
- 3. Basic about AC theory and understand resonance phenomenon in circuits
- 4. Elementary to moderate knowledge of transformer, generator and motor machine systems.

Learning	Course content	Teaching-	Assessment Strategy
Outcomes	Course content	learning strategy	
	1. Circuit Models: Characteristics and	Lecture	Full Marks: 75
	applications of linear circuit elements;	Exercise/Tutorial/	Attendance:10%
	Ideal and non-ideal voltage and current	quiz	Tutorial/Quiz:20%
CLO-1	source; Series, parallel and compound	Attendance	Exam: 70%
	circuit analysis; Loading effects; Voltage		
	sources in series and parallel, open and		
	short circuit.		
	2. Circuit Theorem and Network		
	Analysis: Voltage and current divider		
	rule; Kirchhoff's law; Superposition;		
CLO-2	Thevenin's, Norton's and Maximum		
	power transfer theorem; Reciprocity		
	theorem; Mesh and Nodal analysis; Delta-		
	star transformation.		
	3. A.C. Theory and Frequency Domain		
	Analysis: General AC theory, AC power,		
CLO-3	average and RMS value of AC voltage		
	and current, resonance phenomena in		
	circuits, Q-value and bandwidth.		

	4. Transformer: Working principle of
	transformer, elementary theory of an ideal
	transformer-E.M.F., equation of
	transformer-voltage transformation ratio,
	transformer with loses but no magnetic
CLO-4	loss, transformer on load-transformer on
	no load, transformer with resistance and
	leakage resistance-simplified diagram,
	transformer rating in KVA, condition for
	maximum efficiency, classification and
	testing of transformer.
	5. D.C Machines: D.C generator; principle,
	types, performances and characteristics,
CLO-4	D.C motor; principles, Types of motor,
	performances, speed control, starters and
	characteristics.
	6. A.C Machines: Classification of A.C
	motors, single phase induction motor
CLO-4	principle, equivalent circuit of an
	induction motor, introduction of
	synchronous and special type of motor.

Authors' name

<u>Title</u>

1. D. R. Resnick and D. Halliday	Physics, Part-2
2. B. L. Theraza	Electrical technology (Volume-1&2)
3. Robert L. Boylestad	Introductory Circuit Analysis
4. R. P. Ward	Basic Electrical Engineering
5. Stephen J. Chapman	Electrical Machinery Fundamentals
6. George F. Corcoran	Alternating Current Circuits

Course Code: CSE2211 Course Title: Computer Fundamentals and Programming in C&C++ Course Credit:3 Course Teacher: Announce to be later

Course Description: The prime target of this course is to make students familiar to computer systems and associated basic concepts. They will also acquire basic programming knowledge. As a consequence, finally, they will be able to run software programs to solve basic computing problems.

Course Objective (Intended Learning Objectives, ILOs):

- 1. This course will help the students to understand the basic structure and relation of different versions of computer system.
- 2. Students will learn different software, programming languages and networking system.
- **3.** The course will enrich the students' capability to handle computer system effectively for their practical life.

Course Learning Outcome (CLO):

- 1. Knowledge about computer and its application
- 2. Understand and identify computer organization, architecture and associated units
- **3.** Develop skills to use different types of software application
- 4. Learn the concepts of data communication and networking.
- 5. Knowledge about computer languages.
- **6.** Analyze natural language problem and hence design a computational solution to the problem in an algorithmic way and convert the algorithm effectively and intelligibly into a procedural program.
- 7. Understand basic knowledge of C++ and apply the attained knowledge in C++ to analyze and solve problems in actual way.

Learning	Course content	Teaching-	Assessment Strategy
Outcomes	Course content	learning strategy	
	1. Introduction: Classification of	Lecture	Full Marks: 75
CLO-1	Computer, working features of computer	Exercise/Tutorial/	Attendance:10%
	system, application.	quiz	Tutorial/Quiz:20%
	2. Hardware: Organization and	Attendance	Exam: 70%
CIO2	architecture of a computer, CPU, memory		
CLO-2	units, I/O devices, peripheral devices,		
	BIOS, bus architecture, storage devices.		
	3. Software and Internet Fundamental:		
	Classification, system software,		
	application software, operating system		
	concepts, word-word processing,		
CLO-3 & 4	spreadsheet database and presentation		
	software, internet service, e-mail, e-		
	commerce, different types of network,		
	network topologies, communication		
	media.		
	4. Programming Basics: Different types of		
	computer language, structured and		
CLO-5 & 6	unstructured programming, algorithms		
	and flowcharts, Overview of C		
	programming languages; C program		

	structure, compiler, interpreter, C tokens, keywords, identifiers, data types, constants, variables.
CLO-4	5. Operation and Expressions: Classification of operators, statements, conditional statements, if and loops; for, while and do-while, decision making and branching, function arrays, pointer, file reading and writing operation in C.
CLO-7	6. Object Oriented programming: Introduction, C++ terminology, encapsulation, class hierarchy, operator overloading, function overloading, C++ I/O function.

Authors' name

Title

- 1. Peter Norton's
- Introduction to Computers Introduction to computer Engineering Hardware and Software Design
- 2. Taylor L. Booth
- 3. E. Balagurusamy Programming in ANSI C
- 4. MerbertSchildt
- 5. Debasish Jana
- The complete Reference C & C++
- C++ and object Oriented Programming Paradigm

Course Title: Statistics for Engineers

Course Code: STAT2211 Course Credit: 2 Course Teacher(s): Announce to be later

Course Description: Statistics for Engineers is one of the first year course in Bachelor of Materials Science and Engineering programme. The course offered in Semester 2 every year. This course introduces basic probability, continuous and discrete random variables, distribution functions and their applications, relationship between distributions, hypothesis testing, and simple linear regression and correlation.

Course Objective (Intended Learning Objectives, ILOs):

Understand and describe sample spaces and events for random experiments.

Course Learning Outcome (CLO):

After successfully completion, the course the students should be able to:

- 1. Interpret and calculate probabilities of events in discrete sample spaces, and conditional probabilities of events using Bayes' theorem.
- **2.** Use probability as a tool to develop probability distribution that serve as models for any random variables.
- **3.** Predict the value of any independent variable to the value of dependent variable using a linear regression analysis.
- **4.** Perform a significant test of hypothesis concerning the values of population mean based on normal and t distribution.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1	1. Analysis of statistical data: Location,	Lecture	Full Marks: 50
	Dispersion and their measures, Skewness,	Exercise/Tutorial/	Attendance:10%
	Kurtosis and their measures, Moment and	quiz	Tutorial/Quiz:20%
	Cumulants and Practical examples.	Attendance	Exam: 70%
CLO-1	2. Probability: Concept of probability, Sample		
	Space, Events union and Intersection of		
	Events, Probability of events, Loss of		
	probability, Conditional probabilities, Bose		
	Einstein Statistics, Bay's Theorem,		
	Chebysec's Inequality and Practical		
	examples.		
CLO-2	3. Random variables and probability		
	Distribution: Basic concepts, Discrete and		
	continuous random variables, Density and		
	distributional functions, Mathematical		
	expectation and variance, Joint marginal and		
	conditional density functions, Conditional		
	Expectation and conditional variance,		
	Moments and Cumulant generating		
	functions, Characteristic function, Study of		
	Binomial Poisson, Normal and Bivariate		
	Normal distribution and Practical examples.		
CLO-3	4. Linear Regression: Correlation, Rank		
	correlation. Partial and Multiple correlations		
	Linear Regression for two Variables,		

	Principle of Least Squares Method, Lines of	
	best fit, Residual Analysis and examples.	
CLO-4	5. Test of Significance: Basic ideas of Null	
	hypothesis, Alternative hypothesis, Type-I	
	error Type-II error level of significance	
	Degree of freedom, Rejection region and	
	Acceptance region. Test of Single mean,	
	Single variance, Two sample means and	
	Variances. Test for 2×2 contingency tables,	
	Independence test and practical examples.	

Recommended Books:

Authors' name

- 1. P.G.Hoel.
- 2. S.G. Gupta
- 3. A.J.B.Anderson
- 4. H. Cramer
- 5. D.V.Lindley
- 6. S.Lipschutz.
- 7. Mosteller, Rourke & Thomas
- 8. F.L.Wolf.
- 9. T.H. Wonnacot&R.J.Wonnacot
- 10. Yule & M.G. Kendall.

Title

Introductory Statistics Fundamentals of Statistics Interpreting Data The Elements of Probability Theory Introduction to Probability and Statistics Probability Probability with Statistical Applications Elements of Probability and Statistics Introductory Statistics An Introduction to the Theory of Statistic

Course Code: LAW2211 Course Name: Law and Professional Ethics **Course Credit:2** Course Teacher: Announce to be later

Course Description: Course Objective (Intended Learning Objectives, ILOs): **Course Learning Outcome (CLO):**

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
	1. Law: Principle of law of contract, agency,	Lecture	Full Marks: 50
	partnership, sale of goods negotiable	Exercise/Tutorial/	Attendance:10%
	instruments, insurance-insolvency.	quiz	Tutorial/Quiz:20%
	2. Company law: The companies act with	Attendance	Exam: 70%
	special reference to the amendments and		
	ordinances applicable to Bangladesh. Law		
	regarding formation, Incorporation,		
	Management and winding up of companies.		
	3. Labor Law: The scope and sources of labor		
	law, Law in relation to wages, hours, health,		
	safety and other condition to work, the		
	legislation effecting employment in		
	factories, The trade union legislation		
	arbitration, the policy of the state in relation		
	to labor, Elementary principle of labor law.		
	4. History and Development of Engineering		
	Ethics: Study of Ethics in Engineering.		
	Applied Ethics in engineering. Human		
	qualities of an engineer. Obligation of an		
	engineer to the clients and to other		
	engineers. Measures to be taken in order to		
	improve the quality of engineering		
	profession.		
	5. Ethical Expectations: Employers and		
	Employees inter-professional relationship,		
	maintaining a commitment of Ethical		
	standards, desired characteristics of a		
	professional code, Institutionalization of		
	Ethical conduct.		

Recommended book(s):

Authors' Name

Authors' Name	Title
1. K. Sen	A Hand Book of Commercial Law
2. A. B. Siddique	The Law of Contract
3. A. A. Khan	Labour and Industrial Law
4. Emile Durkheim	Professional Ethics and Civics Morals
5. J. D. Mabboth	An Introduction to Ethics
6. Coopers	Outline of Industrial Law
7. A. Zulfiquar	A Text Book on the Bangladesh Labour Act-2006
8. P. Narayanan	Intellectual Property Law
9. A. R. Khan	Business Ethics

Course Code: CSE2212 Course Title: Computer Programming and Electrical Laboratory Course Credit: 2 Course Teacher(s): Announce to be later

Laboratory course Description/objective: This course concentrates on practical coverage of computer science area. It introduces general application software, tools and computer usage concepts as well as real life problem solving with the help of C/C++ programming language. Besides, this lab provides basic practical understanding about electrical circuits and machine system.

	Course content	Teaching-learning	Assessment
		strategy	Strategy
1.	Computer programming and its applications to	Lecture	Full Marks: 50
 2. 3. 4. 5. 	simple problems solution. Writing and running programs for the solution of Engineering and Mathematical problems. Solution of simple problems using C / C++ language. Study series and parallel circuits to understand current voltage relationship in the circuit. Verify thevenin's theorem for a complex linear circuit.	Exercise/Tutorial/ quiz Attendance	Attendance:10% Quiz, viva-voce and continuous assesment:30% Exam/Design work/Report: 60%
6.	Design and construction of transformer.		

Suggested Reading Lists/Essential Readings

Reference Books:

Author's Name	<u>Title</u>
1. E. Balagurusamy:	Programming in ANSI C
2. L. Theraza:	Electrical technology (Volume-1&2)

Course Title: GeneralChemistry Laboratory

Course Code: CHEM2212 Course Credit: 2 Course Teacher(s): Announce to be later

Laboratory course Description/objective:

The purpose of the undergraduate general chemistry program is to provide the key knowledge base and laboratory resources to prepare students for careers as professionals in the field of material science.

Learning outcomes:

Upon successful completion of this course, students will understand safety, transfer and measurement of chemicals, using physical properties to identify compounds, chemical reactions. Students will gain an understanding of:

- 1. The planning and implementation of advanced organic reactions
- 2. Basic chemistry techniques, such as how to calculate percent yields, how to use measuring devices properly
- 3. Detection of elements in organic compounds
- 4. Identification of functional groups organic compounds
- 5. Determination and identification of different metal ions

	Course content	Teaching-	Assessment
		learning strategy	Strategy
1.	Detection of elements in organic compounds.	Lecture	Full Marks: 50
2.	Identification of functional groups organic	Exercise/Tutorial/	Attendance:10%
	compounds.	quiz	Tutorial/Quiz/viva-
3.	Identification of unknown organic compounds by	Attendance	voce and continuous
	their physical constants such as m p and h p		assesment:20%
4	Dreparation of different organic compounds		Exam/Design
4.			work/Report: 70%
5.	Separation, purification and characterisation of		
	organic compounds.		
6.	Determination and identification of different metal		
	ions (Zn, Cu, Fe, Cr, Mn, Mg, Pb, Al, Mg etc).		
7.	Separation and estimation of iron and calcium,		
	copper and zinc from their mixtures.		
8.	Analysis of water and some industrial products.		

Suggested Reading Lists/Essential Readings

Third Year First semester Examination-2026

Course Title: Polymeric Materials

Course Code: MSE3111 Course Credit: 3 Course Teacher(s): Announce to be later

Course Description: The course gives a general introduction and concept to polymers. Focus is placed on the classification and systematic of synthetic polymers and biopolymers. This module is designed to provide students with an understanding of both the formation of polymers reaction and specialty polymers.

Intended Learning Objectives (ILOs):

- **1.** The students can demonstrate fundamental materials knowledge including material microstructures, material thermodynamics, material mechanics, and phase transformations.
- 2. They should gain knowledge of contemporary issues on polymer materials and processing.
- **3.** They will be able to apply critical thinking and problem solving skills in design and diagnosis of materials composition, processing, application, and failure in material scientific researches and industrial applications of materials.

Course Learning Outcome (CLO):

- 1. gather knowledge on the general introduction and concept of polymers
- a. account for polymer reaction mechanisms during radical, ionic and condensation polymerization
 b. understand the basic information on specialty polymers
- a. use methods for the characterization of polymer and thereby understand the structure and rheology.
 b. know polymer fabrication and analysis techniques.

Learning	Course content	Teaching-	Assessment
Outcomes	Course content	learning strategy	Strategy
	1. Concept of Polymer: Introduction and definition	Lecture	Full Marks: 75
	of polymer, classification of polymers,	Exercise/	Attendance:10%
	nomenclature of polymers, characteristics of	Tutorial/	Tutorial/Quiz:20%
	different types of polymers. Natural and synthetic	quiz	Exam: 70%
	polymers; organic, inorganic and organic-	Attendance	
CLO-1	inorganic hybrid polymers; simple molecules and		
	macromolecules; inter-molecular forces and		
	chemical bonding in polymers; important uses of		
	polymeric materials; polymer waste disposal and		
	remedies.		
	2. Polymer Formation Reactions: Addition		
	polymerisation, condensation polymerisation,		
	coordination polymerisation, ring opening		
CLO-2.a.	polymerisation, copolymerisation, degree of		
	polymerisation; mechanism of polymerisation		
	(free radical, cationic and anionic), kinetics of		
	polymerisation.		
	3. Specialty Polymers: Polyelectrolytes, ion-		
CLO-2.b.	containing polymers; conducting polymers,		
	biomedical polymers, thermally stable polymer,		
	thermoplastic, elastomers (TPE), polymer		
	composites, polymers for combating environmental		
	pollution.		

	4. Characterization of Polymers: Nature of	
	polymer molecules in solution, size and shape of	
	macromolecules in solution; molecular weight,	
	number average and weight average molecular	
CL0-3	weight; molecular weight distribution, isolation	
	and purification, fractionation, determination of	
	molecular weight of polymer, molecular weight	
	distribution cases.	
	5. Structure and Rheology of Polymers: Viscous	
	flow, viscoelasticity, mechanical model of a	
	viscoelastic material, glassy state and glass	
	transition, amorphous and crystalline polymers,	
CLO-3	crystallinity, crystallisability, factors affecting on	
	crystallisability of polymers, mechanical	
	properties of crystalline polymers, crystalline	
	melting point, relation between T_m and T_g ,	
	property requirements and polymer utilization.	
	6. Analysis and Testing of Polymers: Chemical	
CLO-3	analysis of polymers, Spectroscopic analysis, X-	
	ray diffraction analysis, Microscopic analysis,	
	Thermal analysis, Physical testing.	

Authors' Name

- 1. V. R. Gowariker, N. V. Viswarathan& J. Sreedhar
- 2. P. Bahadur & N. V. Sastry
- 3. S. L. Rosen
- 4. M. G. Aurora & M. Singh
- 5. Premamoy Ghosh

<u>Title</u>

Polymer Science Principles of Polymer Science Fundamental Principles of Polymeric Materials Polymer Chemistry Polymer Science and Technology of Plastics and Rubber

Course Code: MSE3121 Course Title: Glass and Ceramics Course Credit: 3 Course Teacher(s): Announce to be later

Course Description: This course provides an overview of the glass specimens with their composition, structure, properties and relevant characterization techniques. It also deals various manufacturing process of glasses with their home and advanced applications. This course also discuss about the raw materials, properties, structure, manufacturing and design, films and coatings of ceramics and refractory materials. Three main topics are covered: Properties, manufacturing processes with emphasis on achieving the desired properties as well as the basis for design. Properties: Bulk: elasticity, hardness, strength, fracture toughness and creep in relation to composition, structure and thermal properties. Films/coatings: mechanical performance. Manufacturing: Synthetic ceramic powders, the stabilization of dispersions, forming by pressing, casting, extrusion and injection molding, sintering and heat treatment. Deposition of films and coatings. Design: Principles of design with brittle materials, Weibull statistics, analysis of fracture and toughening of ceramics. Finite size effects in ceramic materials.

Course Objective (Intended Learning Objectives, ILOs):

- **1.** To provide knowledge about the glassy state, their properties, chemical durability of glasses and glassmetal seal technology.
- **2.** To deliver idea about laboratory synthesis, various manufacturing processes, characterization of structure and properties and applications of glasses in various sectors.
- **3.** To give knowledge on fiber form of glasses, manufacturing process, textile form of glass and crystal and metallic glasses.
- **4.** To provide overall concept on traditional and functional ceramics, types and structural composition of ceramics.
- **5.** To deliver knowledge on raw materials of ceramics and clays, their manufacturing methods, property characterization techniques.
- **6.** To know about refractory materials, their specific applications and their physical, thermal and mechanical properties at ambient and high temperatures.

Course Learning Outcome (CLO):

After completing this course the student should be able to:

- 1. Describe the glass theory, basic properties of glasses and how glass-ceramics are prepared and their applications in different sectors.
- **2.** Explain the definition of physical properties of ceramic materials (density, heat capacity, thermal conductivity, thermal expansion) and describe which parameters these properties are dependent on.
- **3.** (a) Describe the process of how ceramic materials are produced from powder synthesis to the firing of the green bodies to achieve a dense material.

Describe **(b)** processes for the preparation of ceramic films and coating. Understand the importance of how the preparation process affects the properties of the finished product. (c) Describe typical properties of different ceramic materials and compare these with other types of materials. Understand how finite size effect influences the properties of ceramics.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1&2	1. Glass Technology: Glasses: Definition,	Lecture	Full Marks: 75
	structure, composition and constitution, of	Exercise/Tutorial/	Attendance:10%
	glasses; Properties of glass: forming methods	quiz	Tutorial/Quiz:20%
	for glasses, chemical durability, stress release	Attendance	Exam: 70%
	and annealing, glass-metal seals.		
CLO-2&3	2. Manufacturing and Characterization of		
	Glass: Raw materials and melting, primary		
	forming operation, finishing operations,		
	manufacturing tolerances and glass design,		
	characterization: by IR, by NMR and by XRD.		
CLO-2 & 3	3. Application of Glasses: Glass containers, flat		
	glass and glazing, laboratory glassware and		
	thermometers, glasses in the chemical industry,		
	sight and gage glasses, electric lamps and		
	electron tubes, illumination.		
	4. Fibrous Glass: Composition and properties of		
	fibre, manufacturing processes and products,		
	application of fibrous-glass wool, applications		
	of fibrous-glass textile products, fibrous-glass-		
	reinforced plastics, metallic glass and crystal		
	glass.		
CLO-2&3	5. General Concept and Structure of Ceramics:		
	History, Definitions: traditional and		
	turno original structures A V turno original		
	type crystal structures, $A_m A_p$ -type crystal		
	structures, $A_m D_n A_p$ -type crystal structures,		
	anions coramics density computations		
	imperfections in ceramics Silicate Ceramics:		
	Silica silica dassas silicatas lavarad silicatas		
	diamond graphite and fullerences ALO.		
	Cr_2O_2 MgO-AbO ₂ ZrO ₂ -CaO and SiO ₂ -AbO ₂		
	systems phase composition versus		
	temperature.		
CLO-2&3	6. Raw materials of ceramics and Clavs:		
	General consideration. Clay minerals, Talc and		
	related minerals, Silica and silicate minerals,		
	Other raw materials, The role of various kinds		
	ceramic material to the ceramic ware.		
	Composition and plasticity of clays, burning of		
	clays, colour of clay products, brick making		
	methods, efflorescence on bricks, terra-cotta		
	ware, and sanitary ware.		
CLO-2 & 3	7. Processing and Characterization of		
	Ceramics: Material preparations, powder		
	pressing, extrusion, soft plastic forming, slip		
	casting, drying, firing, glass forming methods,		
	ceramic strain sorting, polishing, glazing,		

	decorating, coating of the ware and special processes of ceramics, characterization: by XRD, IR analysis and Impedance measurement.	
CLO-2 &3	8. Refractory Materials: Fire clay, high alumina refractories, silica, magnesite and magnesia, chrome refractories, fosterite, dolomite, mortar materials, pyrometric cones, chemical reactions of refractories, physical behaviour of refractories, thermal conductivity and specific heat of refractories.	

Recommended Books:

Authors' Name

- 1. E.B. Shand
- 2. William F. Smith
- 3. William D. Callister
- 4. J.C. Anderson, K.D. Leaver, D. Rawlings & J.M. Alexander
- 5. Robert B. Leighou
- 6. W.D. Kingery, H.K. Bowen & R. D. Whlmann
- 7. P. William Lee

Title

Glass Engineering Handbook Foundation of Materials Science & Engineering. Materials Science & Engineering–An Introduction Materials Science

Chemistry of Engineering Materials Introduction to Ceramics

Ceramics

Course Code: MSE3131

Course Title: Composite Materials

Course Credit: 3

Course Teacher(s): Announce to be later

Course Description: Composite materials is an introductory course focusing on students learning of hybrid composites and mechanics of composites, and design guidelines of fiber reinforced composite materials. Moreover, the basics of composite carbon-carbon are introduce.

Intended Learning Objectives (ILOs):

- 1. The course will help the students to understand the fundamental concepts of composite materials including the types, properties, fabrication and applications of the materials.
- 2. Students will also learn the design of composite materials and advanced field of nanocomposite.
- 3. The different bonding mechanism and interfacial chemical reaction of composite will be clearly understood.

Course Learning Outcome (CLO):

After successfully completion, the course the students should be able to:

- 1. Gain knowledge of general concept of composite materials including the types, properties, fabrication and applications of the materials.
- 2. Increase knowledge about the metal, polymer, ceramic and carbon matrix composite materials, and nanocomposites materials.
- 3. Understand the design of composite materials, different bonding mechanism and interfacial chemical reaction.

Learning Outcomes	Course content	Teaching-learning strategy	Assessment Strategy
CLO-1	1. General Concepts: Introduction, types of composite materials, matrix materials, reinforcements, types of fibers, laminar composites, flake composites, filled composites, particulate reinforced composites, cermet's, microspheres, economics of composites and reinforcements	Lecture Exercise/Tutorial/ quiz Attendance	Full Marks: 75 Attendance:10% Tutorial/Quiz:20% Exam: 70%
CLO-3	 Design of Composite Materials: Introduction, hybrid composites, angle-plied composites, mechanics of composites, calculation of properties, unidirectional fibre composites, critical volume fraction, discontinuous fibre composites, rule-of mixtures equation, critical angle. 		
CLO-1&2	3. Carbon-Carbon- and Nano-composites: Introduction, carbon matrix and reinforcement, properties, graphite, fabrication processes, interface, applications of carbon-carbon composites; nanocomposites, classification of nanocomposites, polymer nanocomposite, fabrication of nanocomposite, applications.		

CLO-1&2	4. Metal and Ceramic Matrix Composites: Reinforcements, matrix selection, matrix- reinforcements interface, fabrication, whisker reinforcements, whisker composite properties, chemical bounding, fibre surface treatment, matrix modification, continuous fibre reinforced composites, chopped fibre composites, fabrication processes, applications of metal and ceramic matrix composites.
CLO-1&2	5. Polymer Matrix Composites: Matrix resins, thermosetting resins, thermoplastic resins, polyaryl ethers (PAE), thermoplastic polyimides (TPI) poly arylene sulfide, molecular composites, fabrication of polymer composites, applications of polymer matrix composites.
CLO-3	6. Mechanics of Composites: Bonding mechanisms- adsorption and wetting, inter-diffusion and chemical reaction, electrostatic attraction, mechanical keying, residual stresses; experimental measurement of bond strength; control of bond strength-coupling agents and environmental effects, toughness-reducing coatings, interfacial chemical reaction and diffusion barrier coatings, the interphase region.

Suggested Reading Lists/Essential Readings:

Authors' name

- 1. D. Hull & T.W. Clyne
- 2. S.C. Sharma
- 3. T.W. Clyne & P.J. Withers
- 4. K.K. Chawla
- 5. G. Lubin

Title

An Introduction to Composite Materials Composite Materials An Introduction to Metal Matrix Composites Ceramic Matrix Composites Hand Book of Composites

Course Code: MSE3141

Course Title: Mechanical Behaviour of Materials

Course Credit: 3

Course Teacher(s): Announce to be later

Course Description: This course introduced to give students an understanding of the underlying mechanisms of plastic deformation, creep, fatigue and fracture behavior.

Intended Learning Objectives (ILOs):

The objective of this course is to qualitatively and quantitatively assess the role of dislocations in plastic deformation, and to quantitatively predict creep, fatigue and fracture behavior in materials failure.

Course Learning Outcome (CLO):

On successful completion of this course, students should have the skills and knowledge to:

- 1. Explain and describe basic concepts and mechanisms of deformation in metallic structural materials
- 2. Understand the fundamental concepts of stress and strain and the relationship between them.
- 3. Identify and describe the basic creep, fracture and fatigue mechanisms and apply that knowledge to failure analysis

Learning	Course content	Teaching-learning	Assessment
Outcomes		strategy	Strategy
CLO-1	1. Dislocations in Crystals: Dislocations in crystals,	Lecture	Full Marks: 75
	Edge and Screw dislocations, Mechanism of slip	Exercise/	Attendance:10%
	and climb, Imperfect dislocations, Dislocation	Tutorial/	Tutorial/Quiz:20%
	mobility, Extended and Sessile dislocations,	quiz	Exam: 70%
	Interaction of Solute atoms with dislocations,	Attendance	
	Intersection of dislocations.		
	2. Deformation of metals and alloys: Introduction,		
	Elastic and plastic deformation, Deformation in		
	single and polycrystalline materials, Deformation		
CLO-1	by slip, Deformation by twining, the effect of		
	impurities on twinning, the effect of restrain on		
	twinning.		
	3. Elastic Properties of Engineering Materials:		
	Mechanical properties: Elasticity, Plasticity,		
CIO2	Toughness, Resilience, Tensile Strength,		
CLO-2	Ductility, Malleability, Brittleness, Hardness;		
	Stress Strain Relation; Destructive and non-		
	destructive testing.		
	4. Creep: Introduction, Creep mechanisms		
	(Transient creep, Steady State Creep, Creep due		
CLO-3	to grain boundaries, Tertiary creep and fracture.)		
	Metallurgical factors affecting creep. Super		
	plasticity.		
	5. Fatigue: Introduction, Engineering		
	Consideration of fatigue, Metallurgical factors		
CL 0-3	affecting fatigue, the structure charges		
CLO-J	accompanying Fatigue, The formation of fatigue		
	cracks and fatigue failure, fatigue at cleaved		
	temperatures.		
CLO-3	6. Fracture: Introduction, Griffith micro crack		
	criterion, the mechanism of fracture, facture		
	affection brittleness, Fracture toughness, inter		
	granular fracture Ductile fracture, Fracture at		

cleaved temperature, Fracture mechanism maps,	
Twinning fracture.	

Title

Suggested Reading Lists/Essential Readings:

Authors' name

1. R. E. Smallman

2. G. K. Narula, K. S. Narula, V. K Gupta

3. O. P. Khanna

Modern Physical Metallurgy Materials Science Materials Science and Metallurgy

Course Code: MSE3151 Course Credit: 2 Course Teacher(s): Announce to be later Course Title:Production Metallurgy

Course Description: This course will provide a modern and thorough introduction to unit operation and processes to extract metals and to produce important engineering alloys. First three chapters mainly focus on theories and principles of different unit processes and necessary equipment and allied techniques for metal extraction and alloy production. Later chapters include how actually iron, steel and other important engineering alloys are being produced industrially.

Course Objective (Intended Learning Objectives, ILOs):

- 1. The course will make the students familiarize with the main isolation and separation techniques of metal ores.
- **2.** Students will also know the key equipment, unit operations and processes to extract metals from their parent ores.
- **3.** The students will understand the theories behind the metal extraction.
- 4. They will know the techniques to produce important engineering alloys like iron and steel and some non-ferrous alloys.

Course Learning Outcome (CLO):

After successfully completion the course the students should be able to:

- 1. Choose optimum techniques to separate a metal from its ore by utilizing basic thermodynamic knowledge of metal separation
- 2. Select an appropriate way to refine a crude metal
- 3. a) Produce pig iron in blast furnace and manufacture steel through different techniques
- 3. b) Produce other engineering non-ferrous metals and alloys

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1	1. Unit Operations and Unit Processes:	Lecture	Full Marks: 50
	Isolation and separation techniques,	Exercise/Tutorial/	Attendance:10%
	equipment diagrams and applications	quiz	Tutorial/Quiz:20%
	Different types of unit processes.	Attendance	Exam: 70%
CLO-1	2. Sources of Metals and Ore Preparation: Ore deposits, mining, ores, iron ores, aluminium ores, copper ores, lead ores, zinc ores, precious metal ores and other metals ores, physical methods of ore preparation, concentration processes, thermal methods of ore preparation		
CLO-1, 2	3. General Methods of Metal Production:		
----------	--		
	Pyro-metallurgical techniques, physical		
	chemistry of thermal reaction processes,		
	hydrometallurgical extraction, thermo-		
	electric extraction, metal refining		
	techniques, theoretical consideration of		
	electrochemical processes.		
CLO-3.a	4. Production of Pig Iron: Blast furnace, raw		
	materials for the blast furnace, blast-furnace		
	design and operation, chemical reactions		
	taking place in blast furnace, products of the		
	blast furnace, and recent developments in		
	blast furnace practice.		
CLO-3.a	5. Steel Making and Alloys of Steels:		
	Production of steel-cement and crucible		
	process duplex steel making process plain		
	carbon steels, low-alloy steels, high-alloy		
	steel.		
CLO-3.b	6. Modern Furnaces of Steel Making:		
	Electric Arc Furnace (EAF): Introduction,		
	Working Principle of EAF, Construction of		
	EAF, Charged Materials/Raw Materials,		
	Advantages, Disadvantages; Induction		
	Furnace (IF): Introduction, Working		
	Principle of IF, Construction of IF,		
	Operation, Use of IF, Charged		
	Materials/Raw Materials, Advantages,		
	Disadvantages; Ladle Refining Furnace		
	(LRF): Introduction, Objective of Ladle		
	Refining Furnace, Equipment design &		
	Operation, Desulpherization, Deoxidation,		
	Degasification, Temperature adjustment &		
	Maintain, Homogenization, Removal of		
	Impurities, Alloy adjustment, Inclusion		
	Modification & Cleanliness.		

Αu	<u>ithor's Name</u>	<u>Title</u>
1.	A.R. Baily:	A Text Book of Metallurgy
2.	J. Newton:	Extractive Metallurgy
3.	R.B. Leighou:	Chemistry of Engineering Metals
4.	Bodsworth:	Physical Chemistry of Iron and Steel Making
5.	Rhines:	Phase Diagrams in Metallurgy
6.	Brick & Philips:	Structure and Properties of Alloys

Course Code: MSE3112 Course Title: Polymer Synthesis and Characterization Laboratory Course Credit: 2 Course Teacher(s): Announce to be later

Laboratory course Description/objective:

	Course content	Teaching-	Assessment
		learning strategy	Strategy
1.	Preparation of polystyrene by a free radical	Lecture	Full Marks: 50
	polymerization process.	Exercise/Tutorial/	Attendance:10%
2.	Preparation of solid epoxy resin.	quiz	Quiz, viva-voce and
3.	Determination of epoxide equivalent of the given	Attendance	continuous
	epoxy resin by the pyridinium chloride method.		assesment:30%
4.	Preparation of polysulphide rubber (Thiokol).		Exam/Design
5.	Determination of melting point, storing time and gel		work/Report: 60%
	time of phenolic resins.		-
6.	Determination of molecular weight of polymer by		
	end group analysis and viscometry.		
7.	Estimation of number average molecular weight by		
	hydroxyl end group analysis.		
8.	Identification of different rubbers and plastics.		
9. Determination of tensile strength/breaking strength,			
	elongation of synthetic natural fibres, fabrics and		
	composite materials.		

Suggested Reading Lists/Essential Readings

Author's Name

- 1. A.I. Vogel
- 2. G.D. Cheistain
- 3. F.J. Welcher (edited)
- 4. G. W. Ewing
- 5. P. Bahadur & N. V. Sastr

Title

A Text Book of Quantitative Inorganic Analysis Analytical Chemistry Standard Methods of Chemical Analysis Instrumental Methods of Chemical Analysis Principles of Polymer Science

Course Code: MSE3122Course Title: Glass and Ceramic Processing LaboratoryCourse Credit:2Announce to be later

Laboratory course Description/objective: This course is outlined for the laboratory experience in design, processing, and characterization of glasses and ceramics. Glasses are formulated, melted and characterized to correlate composition and properties. The students examine the properties and behavior of molten glass along with basic forming techniques, including quenching method, off-hand shaping, molding and casting. Chemical durability measurements of the synthesized glasses are also performed in this laboratory. Moreover, Clay-based ceramics are formulated to meet performance specifications, prepared by slip casting/extrusion, and fired.

	Course content	Teaching-	Assessment Strategy
		learning strategy	
1.	Fabrication of glasses, Ceramics and	Lecture	Full Marks: 50
	refractory materials	Exercise/Tutorial/	Attendance:10%
2.	Forming and Shaping of ceramics	quiz	Quiz, viva-voce and
3.	Characterizations of glass and ceramics by	Attendance	continuous assesment:30%
	XRD, IR analysis, TG-DTA and Impedance		Exam/Design
	measurement		work/Report: 60%
4.	Microstructure and micro-hardness analysis of		
	glass and ceramics		

Suggested Reading Lists/Essential Readings

- Author's Name
- 1. E.B. Shand
- 2. W.D. Kingery, H.K. Bowen & R. D. Whlmann

<u>Title</u> Glass Engineering Handbook Introduction to Ceramics

Course Code: MSE3132 Course Credit: 2 Course Teacher(s): Announce to be later Course Title: Mechanical Property Testing Laboratory

Laboratory course Description/objective:

Course content		Teaching-	Assessment Strategy
		learning strategy	
1.	Determination of tensile and compressive	Lecture	Full Marks: 50
	properties of metallic and composite materials.	Exercise/Tutorial/	Attendance:10%
2.	Determination of Hardness, Compression,	quiz	Quizzes, viva-voce and
	Impact and Fatigue properties of materials.	Attendance	continuous assessment:30%
3.	Analysis of wear and creep damage on		Exam/Design work/Report:
	common metals and alloys.		60%

Suggested Reading Lists/Essential Readings

Third Year Second Semester Examination, 2026

Course Code: MSE3211 Course Credit: 3 Course Teacher(s): Announce to be later

Course Title: Physical Metallurgy of Iron and Steels

Course Description: The course will provide the fundamental concepts of steel, tool steel, stainless steel, and their different types of identification methods. Also, focus on the theory of heat treatment process that covers the iron-carbon phase diagram, isothermal and continuous cooling curves, annealing, quench and tempering, and surface hardening treatments. The more common metallurgy of mechanical working process will also be discuss in detail.

Course Objective (Intended Learning Objectives, ILOs):

- **1.** The course will help the students to understand the fundamental concepts of steel, tool steel, stainless steel, and their different types of identification methods.
- 2. Students will also learn the different theories of heat treatment process that covers the iron-carbon phase diagram, isothermal and continuous cooling curves, annealing, quench and tempering, and surface hardening treatments.
- 3. The course will improve the student's capability of metallurgy of mechanical working process.

Course Learning Outcome (CLO):

After successfully completion the course the students should be able to:

- 1. Gain knowledge of steel, tool steels, and stainless steels with their allowing elements and identification methods.
- **2.** Understand heat treatment processes used in the steel industry and know transformations with time-temperature-transformation diagrams.
- **3.** Apply various mechanical working processes used in steel industry.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1.	1. Steel and Tool Steels: Introduction, Alloy	Lecture	Full Marks: 75
	steel, Effect of alloying elements, Nickel,	Exercise/Tutorial/	Attendance:10%
	Chromium Nickel-Chromium, Manganese,	quiz	Tutorial/Quiz:20%
	Molybdenum, Tungsten and Silicon steel,	Attendance	Exam: 70%
	Tool steels; Classification of tool steel,		
	Properties of different tool steel, Cast Iron:		
	Type of cast iron, White cast iron, Malleable		
	cast iron, Gray cast iron, Alloy cast iron.		
CLO-1.	2. Stainless Steel: Introduction, Martesitic,		
	Ferritic and Austenitic stainless steel, Ni and		
	Cr equivalent, Schaeffler diagram of		
	Stainless steel and Supperalloys.		
CLO-1.	3. Testing of Steels: Identification tests:		
	Appearance test, Sound test, Spark test,		
	Weight test, Bend test and Filling test;		
CLO-2.	4. Heat Treatment of Steel: Introduction, full annealing, spherodising, normalizing,		

	isothermal transformation diagram, transformation to pearlite and Bainite, cooling curves and the I–T diagram, transformation on continuous cooling, homogeneity of austenite, mechanisms of heat removal during quenching, tempering, austempering.
CLO-2	5. Hardening and surface treatment: Introduction, precipitation hardening, work hardening, case hardening, carburising, pack carburizing, gas carburizing, liquid carburizing, steel for carburizing, applications of carburizing, cyaniding, nitriding, carbonitriding, induction hardening and flame hardening.
CLO-3	6. Metallurgy of Mechanical Working: Introduction, principle of hot and cold working, effects of hot and cold working on properties; others working processes: rolling, forging, extrusion, spinning, drawing, stamping, machining, welding and casting.

Author's Name

- 1. R.E. Smallman:
- 2. Sidney H. Avner:
- **3.** Robert B. Leighou:
- 4. Rajendra Kumar:
- 5. R.E. Reed-Hill:
- **6.** J.F. Lancaster:
- 7. Donald S. Clark and Wilber R. Varney:
- 8. V. K. Manchanda and G. B. S. Narang:

Title

Modern Physical Metallurgy Introduction to Physical Metallurgy Chemistry of Engineering Materials Physical Metallurgy of Iron and Steel Physical Metallurgy Principles Metallurgy of Welding, Brazing and Soldering Physical Metallurgy for Engineers Materials and Metallurgy Course Title: Materials Manufacturing Engineering

Course Code: MSE3221 Course Credit: 3 Course Teacher(s): Announce to be later

Course Description: Materials become more valuable when they are make into products. The first part of this course focuses on the fundamental of metal casting, forming and shaping process of plastics, composite, ceramics and glass materials. Later chapters include fundamental of machining, micro-manufacturing and fabrication of microelectronics device, computer-aided manufacturing and computer-integrated manufacturing systems.

Course Objective (Intended Learning Objectives, ILOs):

- 1. The students will be able to know the basic of materials manufacturing process
- **2.** The students will be able to know the metals casting processes together with typical applications, advantages, and limitation
- **3.** The students will understand the materials-removal process and machining, and computer-integrated manufacturing system.

Course Learning Outcome (CLO):

After successfully completion, the course the students should be able to:

- 1. Understand the fundamentals of materials manufacturing.
- 2. Learn the metals casting and continuous casting machine.
- **3.** Understand the materials removal process and fundamental of machining operations as cutting-tool materials and cutting fluids and fabrication of microelectronics devices.

Learning	Course content	Teaching-learning	Assessment
Outcomes		strategy	Strategy
CLO-1	1. General Introduction: Concept of	Lecture	Full Marks: 75
	Manufacturing, Product Design and	Exercise/Tutorial/	Attendance:10%
	Concurrent Engineering, Design for	quiz	Tutorial/Quiz: 20%
	Manufacture, Assembly, Disassembly, and	Attendance	Exam: 70%
	Service; Green Design and Manufacturing,		
	Selection of Manufacturing Processes,		
	Quality Assurance and Total Quality		
	Management, Lean Production and Agile		
	Manufacturing		
CLO-2	2. Metal-Casting Processes and Equipment's:		
	Introduction, sand casting, shell-mold		
	casting, expandable pattern casting, plaster-		
	mold casting, ceramic mold casting, pressure		
	casting, die casting, centrifugal casting,		
	casting techniques for single crystal		
	components, inspection of castings, foundries		
	and foundry automation.		

CLO-2	3. Continuous Casting Machine (CCM): Introduction to continuous casting, Objective, diagram of CCM, step involved in continuous	
	tundish, casting Mould, primary cooling, secondary cooling, Cutting torch, cooling Bed, Advantages, Disadvantages, Application.	
CLO-3	4. Material-Removal Processes and Machines: Fundamentals of cutting, cutting- tool materials and cutting fluids, machining process for producing round shapes, machining process for producing various shapes, non-traditional machining processes.	
CLO-3	5. Fabrication of Microelectronic Devices: Introduction, semiconductor and silicon, crystal growing and wafer preparation, film deposition, oxidation, lithography, etching, diffusion and ion implantation, metallization and testing, bonding and packaging, reliability and yield, printed circuit board.	
CLO-3	6. Computer-Integrated Manufacturing System: Computer-Integrated Manufacturing System: Introduction, manufacturing systems, computer-integrated manufacturing, computer-aided design and engineering(CAD), computer-aided manufacturing(CAM), computer-aided process planning, 3D modelling, Printing and computer simulation of manufacturing process and systems, group technology, cellular manufacturing, flexible manufacturing systems, just-in-time production, artificial intelligence, factory of the future.	

Author's Name

- 1. Kalpakjian
- 2. B. W. Niebel, A. B. Draper, R. A. Wysk
- 3. P. N. Rao
- 4. Rajiv Asthana, Ashok Kumar, Nerendra Dahotre Science
- 5. Peter Beeley
- 6. W. R. Irving

Title

Manufacturing Engineering and Technology Modern Manufacturing Process Engineering Manufacturing Technology Materials Processing and Manufacturing

Foundry Technology Continuous Casting of Steel

Course Title: Corrosion Engineering

Course Code: MSE3231 Course Credit: 3 Course Teacher(s): Announce to be later

Course Description: At least to some extent most materials experience some kind of interaction with their diverse surrounding environment causing deterioration with time. Prior design, a materials engineer needs to know such type of interaction either to avoid or to minimize deterioration. First two chapters of this course will make the students familiarize with the basic theories of corrosion. Corrosion testing, the most important part of corrosion engineering, will be taught in chapter three. Students will learn different types of corrosion and their preventive measures in Chapter four, five and six respectively.

Course Objective (Intended Learning Objectives, ILOs):

- 1. This course will help the students to understand the basic principle and theoretical background of different forms of corrosion.
- 2. Students will learn different preventive, protective and monitoring measures against corrosion.
- **3.** The course will enrich the students' capability to protect machineries effectively from the risk of corrosion in industrial arena.

Course Learning Outcome (CLO):

After successfully completion the course the students should be able to:

- 1. Utilize their basic electrochemical knowledge to understand corrosion
- **2.** Measure the rate of corrosion
- **3.** a) Identify and detect the type of corrosion
- **3.** b) Design a device or system to protect a structure from corrosion

Learning	Course content	Teaching-learning	Assessment
Outcomes		strategy	Strategy
CLO-1	1. General Concepts: Definition and	Lecture	Full Marks: 75
	importance of corrosion; cost of corrosion,	Exercise/Tutorial/	Attendance:10%
	corrosion damages, classification of	quiz	Tutorial/Quiz:20%
	corrosion, future outlook, electrochemical	Attendance	Exam: 70%
	aspects of corrosion, corrosion cells,		
	environmental effects, metallurgical and		
	other aspects.		
CLO-1	2. Theory of Corrosion: Thermodynamic		
	aspects of corrosion - free energy, cell		
	potentials and EMF series, diffusion		
	processes and double layer, pourbaix		
	diagram; electrode kinetics - exchange		
	current density, limiting current, hydrogen		
	over voltage, activation polarization,		
	concentration polarization, combined		
	polarization, mixed-potential theory, mixed		
	electrodes, passivity, passivator, flade		
	potential, active passive cells and behavior of		
	metals, mechanisms of the growth and		
	breakdown of passive films.		
CLO-2	3. Corrosion Testing: Classification, purpose,		
	surface preparation, measuring and weighing,		
	exposure techniques, standard expression for		

	corrosion rate, NACE test methods, linear	
	polarization, AC impedance, Tatel	
	polarization technique, in-vivo corrosion,	
	paint tests, seawater test.	
CLO-3.a	4. Corrosion Forms and Corrosion Under	
	Special Conditions: Galvanic corrosion,	
	crevice corrosion, pitting, inter-granular	
	corrosion, selective leaching, erosion	
	corrosion, stress corrosion, corrosion fatigue,	
	fretting corrosion, hydrogen damage,	
	atmospheric corrosion and underground	
	corrosion.	
CLO-3.b	5. Corrosion Prevention: Materials selection;	
	alteration of environment, design, cathodic	
	and anodic protection, inhibitors and	
	passivators, metallic coatings, inorganic	
	coatings, organic coatings.	
CLO-	6. Corrosion in Industries: High Temperature	1
3.a,&b	Corrosion, Corrosion in boiler plants, gas-	
	turbine blades, chemical industries,	
	petroleum, building and fertilizer industries.	
	r	

Author's Name

Title

INU		
1.	Mars G. Fontana :	Corrosion Engineering
2.	H.H. Uhlig & R. Revie :	Corrosion and Corrosion Control
3.	U.R. Evans:	An Introduction to Metallic Corrosion
4.	E.C. Potter:	Electrochemistry

Course Title: Electrochemical Engineering

Course Code: MSE3241 Course Credit: 3 Course Teacher(s): Announce to be later

Course Description: At least to some extent most materials experience some kind of interaction with their diverse surrounding environment causing deterioration with time. These deterioration processes involved some special types of electro chemical phenomenon. Prior design, a materials engineer needs to know such type of interaction either to avoid or to minimize deterioration. First three chapters of this course will introduce different types of thermodynamical, electrode kinetics and electrochemical phenomenon of various electrochemical cells. The fundamental of electrodeposition, electrode and cell design for industrial uses, and electroplating of various metals and its alloys will be studied in chapter four, five and six respectively.

Course Objective (Intended Learning Objectives, ILOs):

- 1. This course will be give some special electro chemical phenomenon of electrodes and electrochemical cells.
- 2. Students will learn about the thermodynamic and kinetics of electrode reaction.
- 3. The course will enrich theatrical knowledge about different electrodeposition process.

Course Learning Outcome (CLO):

After successfully completion the course the students should be able to:

- 1. Utilize their knowledge of natural science to understand the thermodynamics and kinetics of electrochemical cell.
- 2. Get advanced knowledge about the electrodeposition of metals and alloys.
- **3.** Batch calculation and electroplating
- **4.** Application of theoretical knowledge to about protect and beatify of several of materials especially metals.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1	1. Electrode Processes: Electrochemical cells	Lecture	Full Marks: 75
	and reactions, faradaic and nonfaradaic	Exercise/Tutorial/	Attendance:10%
	processes, mass-transfer-controlled reactions,	quiz	Tutorial/Quiz:20%
	Nernstian reactions.	Attendance	Exam: 70%
CLO-1	2. Potentials and Thermodynamics of Cells: Basic electrochemical thermodynamics – reversibility, cell emf, emf and concentration, formal potentials; interfacial potential differences, liquid junction potentials, types of liquid junctions, conductance, transference number and mobility, calculation of liquid junction potentials; selective electrodes.		
CLO-1	3. Kinetics of Electrode Reactions: Electrode reactions, electrode reaction models, the exchange current at equilibrium conditions, current-over potential relationship, reversible behaviour, effects of mass transfer on electrode reactions., Derivation of general mass transfer equation, migration.		

CLO-2	4. Electrodeposition of Metals: Introduction,
	adhesion, cohesion, continuity and uniformity
	of electrodeposits, electrodeposition of alloys,
	plating corrodible metals, mechanism and
	kinetics of electrodeposits, mode of growth of
	electrodeposits, deposition of bright metal
	coatings, nucleation of coatings, growth
	morphology, internal stresses in
	electrodeposits, hardness and wear resistance,
	porosity, metal surface preparation,
	electrodeposition of metals from non-aqueous
	electrolytes.
CLO-3,4	5. Electrodes and Cell Design for Industrial
	Processes: Introduction, lead dioxide anode,
	magnetite anode, lead alloy anodes, carbon and
	graphite anodes, noble metal coated anodes,
	cathodic materials, diaphragms, ion-exchange
	membranes, general ideas of cell design,
	detailed consideration of cell design.
CLO-3,4	6. Electroplating: Electroplating of Ni, Cr, Cu,
	Al, Co, brass, bronze, Ni-Cr alloy, Al-Cr alloy
	and Al-Co alloy, refractory metals;
	electrodeposition of metals on plastics, design
	of tools, electrolytes, electrochemical grinding.

Author's Name

- 1. A.J. Bard & L.F. Faulkner
- 2. C.M.A. Brett & A.M.O. Brett
- 3. K.J. Vetter
- 4. J.O.M. Bockris& A.K.N. Reddy
- 5. A.T. Kuhn (edited)
- 6. E.C. Potter
- 7. W.Blum& G.B. Hogaboom
- 8. F.A. Lowenheim
- 9. R.W. Weiner & A. Walmsley

Title

Electrochemical Methods Electrochemistry Electrochemical Kinetics Modern Electrochemistry Industrial Electrochemical Processes Electrochemistry Electroplating and Electroforming Modern Electroplating Chromium Plating

Course Code: MSE3251 Course Title: Optics and Optical Properties of Materials Course Credit:2 Announce to be later

Course Description: First part of this course is Optics and Second part of the Optical properties of materials. This course introduces optical science with optical properties of materials and some applications. Topics covered in wave optics include; polarization, interference, and diffraction of light. Last part covered the optical properties, luminescence, reflection and optical materials, optical fibers, optical communications.

Course Objective (Intended Learning Objectives, ILOs):

In this engineering course, graduates will learn about the interactions of light with materials and the properties of optical materials.

Course Learning Outcome (CLO):

At the end of this course, the student should be able to:

1. This course intended to develop an understanding of the basic fundamental theory of optics of materials.

2. Identify the suitability of using the optical principle of materials under different conditions.

- 3. Understand the different forms of optical properties.
- 4. Learn about the classification of optical materials and; optical fibers.

Learning	Course content	Teaching-	Assessment
Outcomes	Course content	learning strategy	Strategy
CLO-1	1. Interference of light in a material: Principles of interference, coherent source, phase and path differences, Fresnel's bi- prism, determination of thickness of thin films, interference in thin films, color of thin films and Newton's ring method	Lecture Exercise/Tutorial/ quiz Attendance	Full Marks: 50 Attendance:10% Tutorial/Quiz:20% Exam: 70%
CLO-1	 2. Diffraction of light: Principles of diffraction, Fresnel and Franhofer diffraction, maxima and minima in diffraction patterns, diffraction at a single and double silt, plane diffraction grating, dispersive power of grating, resolving power. 		
CLO-1&2	3. Polarization of light: Principles of polarization, polarization of transverse wave, plane of polarization, Polarization by reflection, Brewster's law, Nicholson prism analyzer,		
CLO-3	4. Optical Properties: Refractive index, Dispersion, Reflectance, Transmittance, Characteristic Penetration depth, Absorbance, Snell's law and total internal reflection, Luminescence, Phosphors, Optical anisotropy.		
CLO-4	5. Optical Materials: Classification of optical materials, Crystalline insulators		

and semiconductors, Op	il glasses,
Metals, Doped glasses a	insulators,
Optical fibers,	

Recommended book(s):

Authors' Name

- 1. N. S. Brizlal:
- 2. S. O. Kasap:
- 3. M. Fox:
- 4. Rolf E. Hummel:

Title

A text Book of optics Principles of Optical Materials and Devices Optical Properties of Solids Electronic Properties of Materials.

Course Code: MSE3212 Course Credit: 2 Course Teacher(s): Announce to be later Course Title: Electrochemical and Corrosion Laboratory

Course Description: This lab. course is designed to enrich the practical skill of purification of metal, electodeopsition of metal and alloys, and corrosion behavior of metals.

Course content	Teaching-learning	Assessment
	strategy	Strategy
1. Electrorefining of metals.	Lecture	Full Marks: 50
2. Electrodeposition of Ni, Cu, Co and determination	Exercise/Tutorial/	Attendance:10%
of current efficiency.	quiz	Quiz, viva-voce and
3. Plating of Sn, brass, brong, and determination of	Attendance	continuous
the plating quality by measuring thickness.		assesment:30%
4. Determination of corrosion rates of carbon steels,		Exam/Design
galvanised steel, aluminium and nickel in various		work/Report: 60%
aggressive media.		
5. Measurement of corrosion rates of base metals		
galvanically couples with different area ratios of		
the noble metals.		
6. Microstructural study of some corroded specimen		

Title

Suggested Reading Lists/Essential Readings

<u>Author's Name</u>

1. E.C. Potter	Electrochemistry
2. W.Blum& G.B. Hogaboom	Electroplating and Electroforming
3. F.A. Lowenheim	Modern Electroplating
4. R.W. Weiner & A. Walmsley	Chromium Plating

Course Code: MSE3222

Course Title: Computer Aided Engineering Drawing and Designing Laboratory

Course Credit: 2 Course Teacher(s): Announce to be later

Course Description: This course offers computer-aided design (CAD) and drawing. Students will get hands-on experiences about CAD software to create precision design and drawing of two-dimensional (2D) and three-dimensional (3-D) models.

Course content	Teaching-learning	Assessment Strategy
	strategy	
1. Computer Aided Drawing (CAD): Use of interactive	Lecture	Full Marks: 50
menu driven software for preparation of line	Exercise/Tutorial/	Attendance:10%
drawing, graphic co-ordinate system; Commands for	quiz	Quiz, viva-voce and
draw, erase, move, rotate, mirror, hatch, etc.; Blocks	Attendance	continuous
and layer, dimension drawing size, saving, editing		assesment:30%
and plotting		Exam/Design
2. Drawing three dimensional objects.		work/Report: 60%
3. Drawing three dimensional objects.		

Suggested Reading Lists/Essential Readings

|--|

1. Z. A. Siddiqui:

<u>Title</u> Basics of Engineering Drawing

Fourth Year First Semester Examination, 2027

Course Code: MSE4111 Course Title: Advanced Methods of Materials Characterization Course Credit: 3 Course Teacher: Announce to be later

Course Description: They will also learn the details about the characterization stages. This course can explain how to analyze samples by using a scanning electron microscope (SEM), Transmission electron microscopy (TEM), Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy (STM), DTA and TGA. It can also name the parts of those instruments. The course will enrich the students about the microscope and spectrometer parameters and what to do to obtain best and correct images and chemical analysis.

Course Objective (Intended Learning Objectives, ILOs):

The course is introduced to help the students understanding of the basic principles and theoretical background of different materials characterization, their instruments and characterization techniques.

Course Learning Outcome (CLO):

- 1. Exploit their basic knowledge to understand the methods of surface study, Principle of various light microscope, surface treatment process followed by morphological analysis, Comparison of optical microscope with other conventional microscope.
- **2.** Principle, Instrumentation, Applications, Advantages and Disadvantages, Sample preparation and their Modification of Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM).
- **3.** Explain different methods used to characterize materials and the basic operation of the equipment.
- **4.** Basic operation of method and Practical aspect of the thermo gravimetric analysis of differential thermal analysis.
- 5. Characterizations of Magnetic Materials and Superconducting Device.

Learning	Course content	Teaching-	Assessment Strategy
Outcomes	Course content	learning strategy	
	1. Metallurgical Microscopy: Introduction	Lecture	Full Marks: 75
	to Optical Microscopy, Types of optical	Exercise/Tutorial/	Attendance:10%
	microscope, Principle of Dark field and	quiz	Tutorial/Quiz:20%
	Bright field illumination, Instrumentation	Attendance	Exam: 70%
$CI \cap 1$	of compound light microscope,		
CLO-1	Magnification by Brightfield Microscope,		
	Advantage ,disadvantage and		
	applications of Brightfield Microscope,		
	Surface treatment process followed by		
	Morphological Analysis.		
	2. Scanning Electron Microscopy (SEM):		
	Introduction, Principle of the SEM, SEM		
CLO-2	Instrumentation and their function, Signal		
	generation process and image formation,		
	Sample Preparation and their		
	Modification, Advantages and		
	disadvantages of SEM, Practical aspects		
	of SEM or Applications, Comparison of		
	SEM with other microscopes.		

CLO-2	3. Transmission Electron Microscopy (TEM): Introduction, Working Principle of the Method, Image formation by TEM, Advantages and disadvantages of TEM, Practical Aspect of the Method, Instrumentation and their functions,Uses, Method Automation, Sample Preparation and their Modification.
CLO-3	4. Atomic Force Microscopy (AFM): Introduction, Principle of operation, Atomic force imaging, Biological molecules, Nanoscale surface forces, Non-Contact imaging.
CLO-3	5. Scanning Tunnelling Microscopy (STM): Introduction, Principles of STM, Practical aspect of STM, Methods of automation, data analysis, sample preparation.
CLO-4	6. DTA and TGA: Introduction to thermal analysis, differential thermal analysis: introduction, principles of method, Practical aspect of the method, data analysis, sample preparation, thermogravimetric analysis (TGA): Introduction, principles of method, Practical aspect of the method, data analysis, sample preparation.
CLO-5	7. Characterizations of Magnetic Materials: Superconducting Quantum Interference Device(SQUID), Vibrating Sample Magnetometer (VSM), B-H Meter, Gauss Meter.

Recommended book(s):

1. P.F. Kane 2. Yang Leng Characterization of Solid Surfaces Materials Characterization

Course Code: MSE4121 Course Credit:3 Course Teacher: Announce to be later

Course Title: Plastic and Rubber Technology

Course Description: This course clarify, inform and explain each aspect of plastic and rubber technology. This course are divided into three main aspects of plastic and rubber technology namely introduction to plastic and rubber materials, synthesis and processing of plastics, manufacturing, identification, and testing of plastics, rubber materials. This course dealing with plastic processing operation such as injection, compression, transfer and blow molding. This course is also to make the students familiar with the concepts of manufacturing operations, finishing, machining, characterization, quality control, research and development technology.

Course Objective (Intended Learning Objectives, ILOs):

- 1. The course will help the students to understand the fundamental concepts on plastics and rubber materials.
- 2. Students will also help to learn the compounding, master batching, processing techniques of plastics and rubber.
- **3.** This course will help to learn how to get expertise in manufacturing, characterizing rubber and plastic products.
- **4.** The course will improve the student's ability on testing and quality development of industrial plastic and rubber products.

Course Learning Outcome (CLO):

After successfully completion the course the students should be able to:

- 1. Explain the concepts of plastics and rubber materials
- 2. (a) Preparations of raw materials for processing and manufacturing of plastics and rubber products
- 2. (b) To learn about finishing and machining of plastic and rubber products manufacturing
- 3. To understand about identification, testing and quality analysis of plastics and rubber materials.

Learning Outcomes	Course content	Teaching-	Assessment Strategy
CLO-1	1. Plastic Materials, Properties and	Lecture	Full Marks: 75
	Applications: Introduction to plastic	Exercise/Tutorial/	Attendance:10%
	technology, Classification of plastic,	quiz	Tutorial/Quiz:20%
	Copolymer of ethylene, Polyethylene and	Attendance	Exam: 70%
	Polypropylene, Polyethylene Terephthalate,		
	Polyvinyl chloride (PVC), Polyamide (PA)/		
	Nylon, Polytetrafluoroethylene (PTFE),		
	Polystyrene, Additives for plastic		
	compounding, Ployurathanes, Polycarbonates,		
	Epoxy resin, Phenolic resin, Cellulose plastic,		
	PU and Vinyl based ink, PU and vinyl based		
	adhesive, Solvent chemicals in packaging,		
	Important terms in plastic and packaging.		
CLO-2(a)	2. Processing of Plastics: All types of moulding		
	process(e.g. Blow moulding, Extrusion		
	moulding, Injection moulding), Mould		
	construction for all type of moulding,		
	Troubleshooting of moulding, All process of		
	packaging manufacturing(e.g. Film		

	making/LLDPE,HDPE production, Printing,		
	Inspection rewinding, Lamination-Dry, Wet		
	and Extrusion, Curing, Slitting, Pouch),		
	Thermoforming and Vacuum forming.		
CLO-2(b)	3. Finishing and Machining of plastics:		
	Introduction to finishing, filing, tumbling,		
	grinding and sanding, ashing, buffering,		
	polishing machining, plastics, tapping and		
	threading, turning and milling, sawing,		
	piercing, trimming and routing, banking and die		
	-cutting, counter boring and spotfacing ,feeding		
	devices		
CLO-2(a)	4. Manufacturing of Plastic Products: Blow		
	moulded HDPE products, polyurethane foam,		
	synthetic shoes and soles, PVC wires and		
	cables, polyester capacitors, plastic bangles,		
	pressure sensitive tapes, PVC pipes and		
	conduits, zip fasteners, nylon watch straps,		
	artificial acrylic teeth, bakelite electrical parts,		
	spectacle frames, vinyl asbestos floor tiles,		
	contact lenses, plastic welding and sealing.	1	
CLO-1	5. Introduction to Rubbers: Natural rubber,		
CLO-1	5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers		
CLO-1	5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers (TPE), rubber compounding and processing		
CLO-1	5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers (TPE), rubber compounding and processing technology, sulphurvulcanisation, non-		
CLO-1	5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers (TPE), rubber compounding and processing technology, sulphurvulcanisation, non- sulphurvulcanisation, hard rubber, latex tachnology		
CLO-1	 5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers (TPE), rubber compounding and processing technology, sulphurvulcanisation, non-sulphurvulcanisation, hard rubber, latex technology. 6. Public r. Monufacturing: Manufacture of 		
CLO-1 CLO-2(b)	 5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers (TPE), rubber compounding and processing technology, sulphurvulcanisation, non-sulphurvulcanisation, hard rubber, latex technology. 6. Rubber Manufacturing: Manufacture of rubber footwear beltings hoses wires and 		
CLO-1 CLO-2(b)	 5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers (TPE), rubber compounding and processing technology, sulphurvulcanisation, non-sulphurvulcanisation, hard rubber, latex technology. 6. Rubber Manufacturing: Manufacture of rubber footwear, beltings, hoses, wires and cables rubber to metal bonded articles. 		
CLO-1 CLO-2(b)	 5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers (TPE), rubber compounding and processing technology, sulphurvulcanisation, non-sulphurvulcanisation, hard rubber, latex technology. 6. Rubber Manufacturing: Manufacture of rubber footwear, beltings, hoses, wires and cables, rubber to metal bonded articles, mechanical seals cellular products foam 		
CLO-1 CLO-2(b)	 5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers (TPE), rubber compounding and processing technology, sulphurvulcanisation, non-sulphurvulcanisation, hard rubber, latex technology. 6. Rubber Manufacturing: Manufacture of rubber footwear, beltings, hoses, wires and cables, rubber to metal bonded articles, mechanical seals, cellular products, foam articles latex thread tyre and weather resistant 		
CLO-1 CLO-2(b)	 5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers (TPE), rubber compounding and processing technology, sulphurvulcanisation, non-sulphurvulcanisation, hard rubber, latex technology. 6. Rubber Manufacturing: Manufacture of rubber footwear, beltings, hoses, wires and cables, rubber to metal bonded articles, mechanical seals, cellular products, foam articles, latex thread, tyre, and weather resistant rubber. 		
CLO-1 CLO-2(b) CLO-3	 5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers (TPE), rubber compounding and processing technology, sulphurvulcanisation, non-sulphurvulcanisation, hard rubber, latex technology. 6. Rubber Manufacturing: Manufacture of rubber footwear, beltings, hoses, wires and cables, rubber to metal bonded articles, mechanical seals, cellular products, foam articles, latex thread, tyre, and weather resistant rubber. 7. Identification and Testing of Plastics and 		
CLO-1 CLO-2(b) CLO-3	 5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers (TPE), rubber compounding and processing technology, sulphurvulcanisation, non-sulphurvulcanisation, hard rubber, latex technology. 6. Rubber Manufacturing: Manufacture of rubber footwear, beltings, hoses, wires and cables, rubber to metal bonded articles, mechanical seals, cellular products, foam articles, latex thread, tyre, and weather resistant rubber. 7. Identification and Testing of Plastics and Rubbers: Identification of common plastics 		
CLO-1 CLO-2(b) CLO-3	 5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers (TPE), rubber compounding and processing technology, sulphurvulcanisation, non-sulphurvulcanisation, hard rubber, latex technology. 6. Rubber Manufacturing: Manufacture of rubber footwear, beltings, hoses, wires and cables, rubber to metal bonded articles, mechanical seals, cellular products, foam articles, latex thread, tyre, and weather resistant rubber. 7. Identification and Testing of Plastics and Rubbers: Identification of common plastics and rubbers, Physical/Mechanical test, Optical 		
CLO-1 CLO-2(b) CLO-3	 5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers (TPE), rubber compounding and processing technology, sulphurvulcanisation, non-sulphurvulcanisation, hard rubber, latex technology. 6. Rubber Manufacturing: Manufacture of rubber footwear, beltings, hoses, wires and cables, rubber to metal bonded articles, mechanical seals, cellular products, foam articles, latex thread, tyre, and weather resistant rubber. 7. Identification and Testing of Plastics and Rubbers: Identification of common plastics and rubbers, Physical/Mechanical test, Optical test, Chemical test, Melt flow index (MFI), 		
CLO-1 CLO-2(b) CLO-3	 5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers (TPE), rubber compounding and processing technology, sulphurvulcanisation, non-sulphurvulcanisation, hard rubber, latex technology. 6. Rubber Manufacturing: Manufacture of rubber footwear, beltings, hoses, wires and cables, rubber to metal bonded articles, mechanical seals, cellular products, foam articles, latex thread, tyre, and weather resistant rubber. 7. Identification and Testing of Plastics and Rubbers: Identification of common plastics and rubbers, Physical/Mechanical test, Optical test, Chemical test, Melt flow index (MFI), WVTR, MVTR and OTR test of plastic 		
CLO-1 CLO-2(b) CLO-3	 5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers (TPE), rubber compounding and processing technology, sulphurvulcanisation, non-sulphurvulcanisation, hard rubber, latex technology. 6. Rubber Manufacturing: Manufacture of rubber footwear, beltings, hoses, wires and cables, rubber to metal bonded articles, mechanical seals, cellular products, foam articles, latex thread, tyre, and weather resistant rubber. 7. Identification and Testing of Plastics and Rubbers: Identification of common plastics and rubbers, Physical/Mechanical test, Optical test, Chemical test, Melt flow index (MFI), WVTR, MVTR and OTR test of plastic films/resins, Electrical test, Glass trasition, 		
CLO-1 CLO-2(b) CLO-3	 5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers (TPE), rubber compounding and processing technology, sulphurvulcanisation, non-sulphurvulcanisation, hard rubber, latex technology. 6. Rubber Manufacturing: Manufacture of rubber footwear, beltings, hoses, wires and cables, rubber to metal bonded articles, mechanical seals, cellular products, foam articles, latex thread, tyre, and weather resistant rubber. 7. Identification and Testing of Plastics and Rubbers: Identification of common plastics and rubbers, Physical/Mechanical test, Optical test, Chemical test, Melt flow index (MFI), WVTR, MVTR and OTR test of plastic films/resins, Electrical test, Glass trasition, Rehology of polymers, polymer powder and 		
CLO-1 CLO-2(b) CLO-3	 5. Introduction to Rubbers: Natural rubber, synthetic rubbers, thermoplastic elastomers (TPE), rubber compounding and processing technology, sulphurvulcanisation, non-sulphurvulcanisation, hard rubber, latex technology. 6. Rubber Manufacturing: Manufacture of rubber footwear, beltings, hoses, wires and cables, rubber to metal bonded articles, mechanical seals, cellular products, foam articles, latex thread, tyre, and weather resistant rubber. 7. Identification and Testing of Plastics and Rubbers: Identification of common plastics and rubbers, Physical/Mechanical test, Optical test, Chemical test, Melt flow index (MFI), WVTR, MVTR and OTR test of plastic films/resins, Electrical test, Glass trasition, Rehology of polymers, polymer powder and coatings, X-ray Diffraction, Raman 		

Recommended book(s):	
Authors' name	Title
1.C.M. Blow	Rubber Technology and Manufacture
2.Hofman	Rubber Technology Hand Book
3.Frankly	Rubber Processing
4.R. Chandra & S. Mishra	Rubber and Plastic Technology
5.Premamoy Ghosh	Polymer Science and Technology of Plastic and Rubbers

Course Code: MSE4131 Course Credit:3 Course Teacher: Announce to be later **Course Title:** Magnetic and Dielectric Materials

Course Description: This course covers the physical principles underlying the dielectric and magnetic properties of solids. Classification of magnetic materials and their uses in different applications are assigned. Introduction of dielectric materials, relative permittivity with respect to dc and ac field, dielectric strength and the applications of dielectric materials are included.

Course Objective (Intended Learning Objectives, ILOs):

1. Introduce basic principles of dielectric and magnetic properties of solids

2. Familiarize students with magnetic disc data storage principles and technology

3. Discuss dielectrics in DC and AC fields.

Course Learning Outcome (CLO):

Upon completion of the course, the successful student:

- 1. Develops understanding of the fundamentals of polarizable solids, ferroelectricity, and magnetism.
- 2. Is able to relate this to the functioning of device that exploit these properties.
- **3.** Understand how these properties may be used in device design.

Learning Outcomes	Course content	Teaching- learning strategy	Assessment Strategy
	1. Diamagnetic & Paramagnetic Materials:	Lecture	Full Marks: 75
	Introduction to Magnetic Materials, Magnetic	Exercise/Tutorial/	Attendance:10%
	Dipoles, Types of Magnetic Materials, Origin	quiz	Tutorial/Quiz:20%
	of Magnetism, Classical & Quantum Theory of	Attendance	Exam: 70%
CLO-1 & 2	Diamagnetism, Diamagnetic Substances,		
	Classical & Quantum Theory of		
	Paramagnetism, Paramagnetism for Free		
	Electrons, Hunds Rules, Crystal Field Splitting,		
	Curie law, Paramagnetic Substances.		
	2. Ferromagnetic Materials: Ferromagnetism,		
	Magnetic Domain & Bloch Wall, Hysteresis,		
CLO-1 & 3	Weiss Molecular Field Theory and Exchange		
	integral, Ferromagnetic Alloys, Thermal		
	Effects.		
	3. Antiferromagnetic & Ferrimagnetic		
	Materials: Antiferromagnetism, Neel's		
	Theory, Two Sub Lattice Model,		

	Antiferromagnetic Alloys, Ferrimagnetism, Structure of Ferrites and Garnets, Molecular Field Theory of Ferrimagnetism, Soft and Hard	
	Magnetic Materials, Influence of Temperature on Magnetic Behaviour.	
CLO-1	4. Matter Polarization and Polarization Mechanism: Dipole Moment and Electronic Polarization, Local Field and Clausius- Mossotti Equation, Ionic, Orientation and Interfacial Polarization.	
CLO-1 & 3	5. Frequency Dependent Dielectric Constant and Dielectric Loss: Dielectric Loss, Debye Equations, Cole-Cole Plots and Equivalent Series Circuit. Dielectric Strength, Dielectric Breakdown for Gases, Liquids and Solids.	
CLO-1, 2 & 3	6. Capacitor Dielectric Materials and Piezoelectricity, Ferroelectricity, and Pyroelectricity: Typical Capacitor Constructions, Dielectrics: Comparison, Piezoelectricity, Piezoelectricity: Quartz Oscillators and Filters, Ferroelectric, and Pyroelectric Crystals.	

Recommended book(s):

Authors' Name

Title

1.S. O. Kasap	Principles of Optical Materials and Devices
2.S. O Pillai	Solid State Physics
3. Dekkar, AJ	Solid State Physics
4. Kittle, C	Introduction to Solid State Physics
5. Omar, MA	Elementary Solid State Physics
6. L L Hench& J K West	Principles of Electronic Ceramics
7. D. A. Neaman	Semiconductor Physics and Devices
	·

Course Code: MSE4141 Course Title: Waste Management, Industrial Safety and Environmental Issues Course Credit:3

Course Teacher: Announce to be later

Course Description: This course explains the concepts and strategies related to industrial waste treatment, hazardous waste management and recycling of various wastes materials. The purpose behind this course is also to make the students familiar with the concepts of wastewater characterization, treatment and disposal. Also, focus on the sources, causes, and different effects of air, water and soil pollution. The aim is also to give deeper knowledge of industrial hazards, risk analysis and control of industrial hazards. Finally, explains the concepts and strategies related to environmental management, sustainable development and various environmental systems.

Course Objective (Intended Learning Objectives, ILOs):

- **1.** The course will help the students to understand the fundamental concepts of industrial waste treatment, hazardous waste management and recycling of various wastes materials.
- 2. Students will also learn the wastewater characterization, treatment and disposal.
- 3. The sources, causes, and different effects of air, water, and soil pollution will be clearly understood.
- **4.** The course will improve the student's capability of industrial hazards, risk analysis and control of industrial hazards.

Course Learning Outcome (CLO):

- **1.** (a) Explain the concepts behind industrial wastes characterization, treatment and disposal and environmental issues.
- **1.** (b) Identify the sources of solid and hazardous wastes and manage them.
- **2.** Identify the methods for recycling, recovery and reuse of the materials considered to be waste.
- **3.** (a) Understand sources, causes and effects of air and water pollution.
- 3. (b) Analyze different industrial hazards, risk analysis and control of industrial hazards.

Learning Outcomes	Course content	Teaching- learning strategy	Assessment Strategy
	1. Wastes and Treatment Process: Waste	Lecture	Full Marks: 75
	sources, types and characteristics,	Exercise/Tutorial/	Attendance:10%
	Principles of industrial waste treatment,	quiz	Tutorial/Quiz:20%
	General methods of treatment,	Attendance	Exam: 70%
$CIO_{-1}(a)$	Preliminary, primary, secondary and		
CLO-1 (a)	tertiary treatment of industrial wastes,		
	Treatment of wastes or effluents with		
	organic and inorganic impurities,		
	Suspended solids removal, Ultimate		
	disposal.		
	2. Hazardous Waste Management:		
	Origin and amounts of hazardous wastes,		
	Types of hazardous wastes, Biomedical		
	wastes, Hazardous wastes in the		
CLO-1(b)	geosphere, hydrosphere, atmosphere and		
	biosphere, Management of hazardous		
	wastes, Off side hazardous waste		
	disposal, Co-disposal; Security landfill,		
	characteristics of solid waste, Methods of		

	solid waste treatment, Microbiology involved in solid waste disposal, Radioactive waste disposal, Converting radio waste into solid form and its management, Hazardous substances and	
	health.	
CLO-2	3. Recycling of Wastes: Construction materials from waste; Utilization of agricultural wastes; Urban wastes and bagasse for electricity; Biomass into rural power; Recycling of metal, glass, concrete, plastic and rubber; Acacia, partied board and silica from rice husk; Jute wastes into paper and board plastic for heat and electricity generation; Paints from potatoes; Wealth from flyash; Converting garbage into fuel, fertilizers and power.	
CLO-1 (a)	4. Current Industrial Environmental Status: Concept of threshold limit values, sampling procedure, formulation of guidelines and discharge standards of various industries, permit systems for discharge/emissions, environmental management plan (EMP), objectives and components of EMP, matrix of EMP and its implementation, pollution control laws and acts, case studies with few chemical industries.	
CLO-3 (a)	5. Air Pollution and remedies: Definition, Sources of air pollution, Major air pollutant and their effects. Impacts of air pollution, Depletion of the ozone layer and its implications, Ozone depleting substances (ODS) and their substitutes, Montreal Protocol and its amendments, Greenhouse effect.	
CLO-3 (a)	6. Water pollution and wastewater treatment: Definition, Water resources, Hydrologic cycle, Sources of water pollution, Major water pollutant, their sources and effects; Wastewater treatment, Primary treatment, Secondary treatment, Tertiary treatment.	

CLO-3 (b)	7. Industrial Hazards and Risk Analysis: Types of industrial hazards, Fire hazards, Mechanical hazards, Electrical hazards, Chemical hazards, Pharmaceutical hazards, Radiation hazards, Dust explosion. Industrial pollutants in the environment, Industrial safety, Safety symbols, Importance of Industrial safety.	
CLO-3 (b)	8. Control of Industrial Hazards: Industrial plant layout, Ventilation and lighting, safe storage handling and transportation, Electrical systems, Personal protective devices, First Aid, Laboratory safety, Emergency procedure and mutual aid.	

Recommended book(s):

Authors' name

Title

1.S. E. Manahan	Hazardous Waste: Chemistry, Toxicology and Treatment
2.S. E. Manahan	Environmental Chemistry
3.C. Baird	Environmental Chemistry
4.B. K. Sharma and H. Kaur	Environmental Chemistry
5.T. Sawyer and E. Martell	Industrial Environmental Chemistry
6.J. M. Dallavalle	The Industrial Environment & its Control
7.E. Jogensen	Industrial Waste Water Management
8.R. K. Sapru	Environmental Planning & Management
9.D. Jacob	The Analytical Chemistry of Industrial Poisons, Hazards and Solvents
10.S. M. Mosters	Introduction to Environmental Engineering and Science
11.Metcalf and Eddy	Wastewater Engineering

Course Title: Surface Science and Engineering

Course Code: MSE4151 Course Credit:2 Course Teacher: Announce to be later

Course Description: First part of this course is surface engineering and second part the coating technology: This course provides an introduction to surface engineering. Topics covered in basic surface engineering

Course Objective (Intended Learning Objectives, ILOs):

This course is aims to impart knowledge about various failure of metals such as adsorption, absorption, wear, and friction also surface modification through various coating technologies to improve the functionality and life of components.

Course Learning Outcome (CLO):

- 1. Explain the fundamentals of surface engineering
- 2. Identify the surface modification of components using suitable surface-active agents.

such as surface phenomena, surface active agents, tribology and different types of coatings.

3. Illustrate principle and evaluation of surface tribology such as friction, Wear and lubrication

4. Select the suitable coating technique for surface treatment.

Learning	Course content	Teaching-	Assessment
Outcomes	course content	learning strategy	Strategy
	1. Surface Phenomena: Sorption, films of	Lecture	Full Marks: 50
CLO-1	insoluble substances, adsorption by solids from	Exercise/Tutorial/	Attendance:10%
	solutions, electro kinetic potential.	quiz	Tutorial/Quiz:20%
	2. Surface Texture and Surface Active Agents:	Attendance	Exam: 70%
	Fundamentals of surface texture, application of		
CIO2	surface active agents in metal technology:		
CLO-2	special cleaning operations, rust and corrosion		
	inhibition, electroplating, application in the		
	textile and other industries.		
	3. Tribology: Mechanisms of wear – adhesive,		
CL 0-3	abrasive, corrosive, fatigue and fracture wear;		
CLO-3	surface coating tribology; design for wear		
	prevention, lubrication.		
	4. Metallic Coatings: Preparation of metal		
	surfaces for coatings; methods used in applying		
	metallic coatings; hot dipping,		
CIO_{-4}	electrodeposition, vapour deposition, spraying,		
CLO-4	cementation, cladding, sputtering, powder		
	coating; zinc coatings; tin coatings; nickel		
	coatings and other metal coatings,		
	electrodeposition on plastics.		
	5. Inorganic coatings: Vitreous or porcelain		
CLO-4 & 5	enamels, anodized oxide coatings on		
	aluminum, surface conversion or chemical-dip		
	coatings.		
	6. Organic coatings: Introduction, definition,		
CLO-4 & 5	Function, Constituents, Preparation,		
	characteristics, and types of Paints,		

electrodeposition of paint, Failure of paint;	
Definition, functions, constituents,	
characteristics and types of varnishes, process	
of varnishing; Furniture polish, lacquer and	
enamels, properties and types of distempers,	
distempering process.	

Recommended book(s):

Authors'	name

R.B. Leighou
 N.K. Adam
 S. Glasstone
 Schwatz and Perry

<u>Title</u> Chemistry of Engineering Materials The Physics and Chemistry of Surfa

The Physics and Chemistry of Surfaces Textbook of Physical Chemistry Surface Active Agent

Course Title: Metallurgical Laboratory

Course Code: MSE4112 Course Credit: 2 Course Teacher(s): Announce to be later

Course Description: This lab. course is designed to demonstrate knowledge of metallurgical analyses of metal and alloy (cast iron, different types of steel and stainless steel, brass, bronze) by using Volumetric and spectrophotometric techniques. Analyses of available ores, slags and scraps.

Course content	Teaching-learning	Assessment
	strategy	Strategy
1. Analysis of percentage of copper in Brass by	Lecture	Full Marks: 50
spectrophotometric analysis.	Exercise/Tutorial/	Attendance:10%
2. Estimation of percentage of manganese from steel by	quiz	Quiz, viva-voce and
volumetric analysis.	Attendance	continuous
3. Determination of Lead in Brass by Gravimetric analysis.		assesment:30%
4. Estimation of percentage of calcium from eggshell by		Exam/Design
spectroscopic method.		work/Report: 60%
5. Volumetric, spectrophotometric, atomic absorption		
spectrophotometric and flame photometric techniques		
in metallurgical analyses.		
6. Analyses of commercially available cast iron, different		
types of steel and stainless steel, different types of		
bronze (gun-metal, phosphor bronze, Al bronze, Mn		
bronze), nickel silver, solder and silver alloy.		
7. Analyses of available ores, slags and scraps.		
8. Analyses of galvanized steel for zinc per unit surface area		
and determination of layer thickness.		

Suggested Reading Lists/Essential Readings

Authors Name	Title
A.I. Vogel	A Text-book of Quantitative Inorganic Analysis by

Course Code: MSE4122

Course Title: Polymer Processing Laboratory

Course Title: Electronic Materials Laboratory

Course Credit: 2

Course Teacher(s): Announce to be later

Course Description: This laboratory course is aim to facilitate the student's skill to the synthesis of different type of polymers and their processing. Students will acquire the knowledge on how to study the microstructures, physical and thermal properties of the prepared polymeric materials. Separation and estimation of the different compositions of wood and jute will also be demonstrated in this laboratory course.

Course content	Teaching-learning	Assessment
	strategy	Strategy
1. Determination of physical and thermal properties of	Lecture	Full Marks: 50
polymeric materials.	Exercise/Tutorial/	Attendance:10%
2. Study of microstructure of polymeric materials.	quiz	Quiz, viva-voce
3. Preparation and processing of synthetic polymers.	Attendance	and continuous
4. Casting of self-supporting polymer films.		assesment:30%
5. Synthesis of phenol-formaldehyde resins.		Exam/Design
6. Synthesis of vinyl polymers.		work/Report: 60%
7. Synthesis of nylon, polyesters, PP and PS.		
8. Analysis and estimation of cellulose, hemicellulose and		
lignin in a sample of jute fibre, wood and baggage.		

Suggested Reading Lists/Essential Readings

Course Code: MSE4132 Course Credit: 2 Course Teacher(s): Announce to be later

Course Description: This course grows base parameters of the basic solid material types and their relationships to electrical, thermal, mechanical, and optical properties. In this course, students will gain hands-on experiences about semiconductors, magnetic and dielectric materials and their characteristics properties. Students will gain in depth practical knowledge to understand and develop the materials system with future trend

		T I	
	Course content	l eaching-learning	Assessment
		strategy	Strategy
1.	Fabrication of semiconducting, and dielectric bulk,	Lecture	Full Marks: 50
	and thin film materials.	Exercise/Tutorial/	Attendance:10%
2.	Study the capacitive properties of dielectric	quiz	Quiz, viva-voce and
	materials.	Attendance	continuous
3.	Study the temperature dependent conductivity of		assesment:30%
	semiconducting thin film materials.		Exam/Design
4.	Study I-V characteristic of a p-n junction.		work/Report: 60%
5.	Study two and four probe measurement techniques		
	for a high conducting thin film.		
6.	Study I-V characteristics of metal/ semiconductor		
	junction to access built-in potential, and barrier		
	height of the junction.		
7.	Study C-V characteristic of metal/semiconductor		
	junction to access built-in potential, and charge		
	carrier distribution in semiconductor.		

Fourth Year Second Semester Examination, 2027

Course Code: MSE4211 Course Title: Nano- and Biomaterials Course Credit: 3 Course Teacher(s): Announce to be later

Course Description:

This course actually deals of two different types of materials, one is nanomaterials and the other is biomaterials. These two classes of material are used in cutting edge research of materials science. This course will serve an introductory knowledge for these two special types of materials to the students.

Course Objective (Intended Learning Objectives, ILOs):

1. This course will help the students to critically evaluate the promise of nano-materials and technology.

- 2. Students will learn chemical structure, properties and morphology of different types of biomaterials
- 3. To help the students to explain methods to modify surfaces of biomaterials
- 4. They can choose material for desired biological response.

Course Learning Outcome of Section A (CLO):

After successfully completion this section of the course the students should be able to:

- 1. Understand fundamental knowledge of nanomaterials and thereby recognize why and how physicochemical properties of nanomaterials are different than their bulk counterpart
- 2. Fabricate nanostructures
- 3. a. Demonstrate an understanding of approaches to nanomaterials characterization.
- 3. b Figure out different applications of nanomaterials.

Course Learning Outcome of Section B (CLO):

After successfully completion, this section of the course the students should be able to:

- 1. Understand scientific vocabulary related to biomaterials other than layman language
- 2. Design, synthesis and fabrication strategy to generate new biomaterials to correct any functional disorder
- **3.** Learn proteins and cells interactions with various biomaterials and thereby host responses to implants, including toxicity and health implications.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1	1. Nanomaterials: Introduction, Carbon	Lecture	Full Marks: 75
	Fullerenes and Nanotubes, Micro and	Exercise/Tutorial/	Attendance:10%
	Mesoporous materials, Care-Shell Structures,	quiz	Tutorial/Quiz:20%
	Organic & Inorganic Hybrids, Intercalation	Attendance	Exam: 70%
	compounds, Nano composites and Nano-		
	grained materials.		
CLO-2	2. Nanostructures Fabricated by physical		
	technique: Lithography, Nanomanipulation		
	and nanolithography, Soft lithography,		
	Assembly of Nanopartices and Nanowires.		
CLO-3.a	3. Characterization and properties of		
	nanomaterials: Structural characterization,		
	Chemical Characterization, Physical		
	Properties of nanomaterials.		
CLO-3.b	4. Applications of Nanomaterials:		
	Introduction, Molecular electronics &		

	nanoelectronics, Nanobots, Biological
	applications of nanoparticles, Catalysis by
	Gold nanoparticles, Quantum well and
	Quantum dot devices, Nanomechanics,
	carbon nanotube emitters, photo
	electrochemical cells, photonic crystals and
	Plasmon waveguides.
CLO-4	5. Concepts of Biomaterials: Historical
	evolution of biomaterials, biocompatibility,
	bulk and surface properties of biomaterials,
	host reaction to biomaterials and their
	evaluation, testing, selections and different
	standards for biomaterials, sterilization of
	biomaterials.
CLO-5	6. Metallic, Polymeric and Ceramic
	Biomaterials: Microstructure and properties
	of metallic implants, stainless steel, Co-based,
	Ni-based and Ti-based alloys for implants,
	molecular weight, crystallinity and properties
	of polymeric implants, ultra-high molecular
	weight polyethylene (UHMWPE), hydrogels,
	bio-resorbable and bio-erodable polymers,
	characteristics of bioceramics, bio-inert, bio-
	reactive and bio-resorbable ceramics,
	degradation of materials in biological
	environment and its effect.
CLO-6	7. Protein Adsorption and Cellular/Tissue
	Interactions with Implants: Structure,
	properties and adsorption on surfaces of
	proteins, cell membrane, adhesion, spreading
	and locomotion and its thermodynamics with
	materials interaction, cell and tissue
	compartmentalization, cell differentiation,
	basic tissues and organ formation.

- Author's Name 1. Guozhong Cao: <u>Title</u> Nanostructures and Nanomaterials synthesis, Properties & Applications Introduction to Biomaterials
- 2. S.Bhat:

Course Title: Spectroscopic Analysis of Materials

Course Code: MSE4221 Course Credit: 3 Course Teacher(s): Announce to be later

Course Description: Materials characterization is a very important to tailor new and/or improve the properties of materials. Therefore, a materials engineer should have sound knowledge about different characterization technique. X-ray is a very fundamental tool; first three chapters of this course will enrich knowledge about the internal structural of the material by using X-ray. Fourth chapter introduce the technique to study vibrational properties of materials. Students will learn about in Chapter five and seven.

Objective (Intended Learning Objectives, ILOs):

- 1. This course will help the students to understand the basic principle and theoretical background of different spectroscopic technique for material analysis.
- **2.** By using these technique students will able to study internal structure, vibrational properties and compositional analysis of materials.
- 3. The course will enrich the students' capability to tailor new and/or improve materials.

Course Learning Outcome (CLO):

After successfully completion the course the students should be able to:

- 1. Utilize their knowledge of natural science to understand basic principle of different spectroscopic method.
- **2.** Identify the phase and internal structure of different types of materials.
- 3. Get information about the vibrational properties of materials.
- 4. Determine the chemical composition of different types of materials.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1&2	1. X-ray Diffraction I: Optical grating and	Lecture	Full Marks: 75
	diffraction of light, Crystals and diffraction	Exercise/Tutorial/	Attendance:10%
	of X-rays, Diffraction under non-ideal	quiz	Tutorial/Quiz:20%
	conditions, scattering by an electron,	Attendance	Exam: 70%
	scattering by an atom, scattering by a unit		
	cell, application to powder method,		
	multiplicity factor, Lorentz factor,		
	absorption factor, temperature factor,		
	intensities of powder pattern. X-ray optics,		
	counters, pulse-height analysis, special kinds		
	of diffractometry, scalars, rate meters, and		
	monochromatic operation.		
CLO-1&2	2. X-ray Diffraction II: Orientation and		
	quality of single crystals structure of poly		
	crystalline aggregates, determination of		
	crystal structure, precise parameter		
	measurements, phase-diagram		
	determination, order-disorder		
	transformations and chemical analysis by X-		
	ray diffraction		
CLO-3	3. Spectroscopic Analysis: Theoretical		
	principles for visible, UV-visible,		
	microwave, IRand NMR spectroscopy;		

	instrumentation and their measurement principles; application of spectroscopic techniques for qualitative and quantitative analyses.
CLO-4	4. Electron Spectroscopy for Chemical Analysis (ESCA): Theoretical aspects, instrumentation, chemical shifts, factors related to the use of ESCA for surface analysis, application of ESCA to surface studies.
CLO-4	5. Auger Electron Spectroscopy: Introduction, the Auger process, the secondary electron energy distribution, experimental apparatus, data interpretation and surface analysis, special problems, some recent developments, some related spectroscopic techniques.
CLO-4	6. Atomic Absorption Spectrophotometry: Atomisation, graphic furnace atomisers, volatile hydride, sources of radiation, background correction, detection limits, interferences, application of atomic absorption.

Author's Name

- **1.** P.F. Kane & G.B. Larrabee
- 2. B.D. Cullit
- 3. M.H. Loretto
- 4. Galen W. Ewing
- 5. E.R. Greef, R. Peat, L.M. Peter, D. Pletcher & J. Robinson

Title

Characterization of Solid Surfaces Elements of X-ray Diffraction Electron Beam Analysis of Materials Instrumental Methods of Chemical Analysis Instrumental Methods in Electrochemistry

Course Title: Welding and Joining Technology

Course Code: MSE4231 Course Credit: 2 Course Teacher(s): Announce to be later

Course Description: This course presents the concepts behind welding and joining technology. These include welding and joining techniques, and also the weldability of engineering materials, standards in welding, health and safety. The concepts are then applied to the design and fabrication of engineering components and structures. The importance of selecting the correct welding process and parameters for a particular application will be demonstrate by investigating several case studies.

Course Objective (Intended Learning Objectives, ILOs):

At the end of the course, students should have the concepts to assist in the selection of processes and parameters to make appropriately designed, sound joints, fit for service in the operating environment.

Course Learning Outcome (CLO):

At the end of this course the student should be able to:

- 1. This course is intended to develop an understanding of the fundamental of welding and joining process.
- 2. Identify the evaluate of the suitability of using different welding and cutting process.
- **3.** Illustrate principle and evaluation of using electricity and heat treatment considerations in different welding and cutting process.
- **4.** This course is intended to develop an understanding of the fundamental of joining and bonding processes in materials.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1	1. Introduction: History and recent advances in	Lecture	Full Marks: 50
	welding and joining technology, different	Exercise/Tutorial/	Attendance:10%
	types of welding and Joining techniques,	quiz	Tutorial/Quiz:20%
	Common terms used in welding and Joining,	Attendance	Exam: 70%
	equipment and machines for welding, cutting		
	and Joining, Hazards and safety standards in		
	welding, Joining and allied Processes.		
CLO-1	2. Gas Flame Processes in welding, cutting		
	and Straightening: Definition and		
	classification of welding, Oxyfuel gas		
	welding, definition and classification of		
	cutting, Oxygen torch cutting, Fuel gases for		
	Oxyfuel gas cutting, Stack metal powder,		
	chemical flux and underwater torch cutting,		
	Flame Straightening.		
CLO-1 & 2	3. Arc Processes for welding and cutting:		
	Basic circuit and mode of metal transfer for		
	arc welding, different types of arc welding		
	and cutting, power sources for arc welding,		
	metallurgical and heat considerations in		
	thermal cutting.		
CLO-3	4. Resistance and other welding: Introduction,		
	Theory of resistance welding, effect of		
	temperature, pressure and current in		
	resistance welding, power supply for		

	resistance welding, Different types of resistance welding processes. Different types of solid-State welding processes, welding of plastics, thermal spray coating or metalizing.	
CLO-4	5. Brazing and Soldering: Introduction, definition of brazing, nature and strength of brazed Joints, brazing metals, methods of applying braze metal, heating methods used in brazing, Flux and flux removal, post braze operations and inspections, braze welding, definition of soldering, solder metals, soldering fluxes, heating for soldering, engineering materials and their compatibility with soldering, design and strength of soldered Joints, Flux removal and Flux less soldering	
CLO-4 & 5	6. Adhesive bonding and mechanical Fasteners: Adhesive materials and their properties, Nonstructural and special adhesives, design considerations, Advantages and limitations, Introduction and methods for mechanical fastening, features for mechanical fastening, manufacturing concerns, design and selection in mechanical faster ring.	

Author's Name

Title

1. E.Paul De Garmo, J.T. BlacRonald, Materials and Processes in Manufacturing A. Kohser

Course Title: Engineering Materials

Course Code: MSE4241 Course Credit: 2 Course Teacher(s): Announce to be later

Course Description: This unit takes a detailed look at various engineering materials and the essential properties behind them. Students will learn how to select engineering materials and their properties for designing a particular material system. There is also an emphasis towards energy-related properties and forming properties. Materials studied in detail include alloy compounds, energy ceramics, ferrous metal systems and polymers used for sports, ship structures, airframe, automobile structure, engines and power generation. This course will also familiarize the students with the properties of metal, ceramic, polymer and composite of engineering materials and methods to protect materials and alter their properties.

Course Objective (Intended Learning Objectives, ILOs):

- 1. To give students the background required to pursue further studies in materials processing, design and related engineering fields.
- 2. To develop an understanding about the engineering materials to determine their various physical and mechanical behavior for advanced applications.
- 3. To introduce students the failure modes, best criteria for performance and the alloying composition of engineering materials for deriving numerous properties.

Course Learning Outcome (CLO):

Upon completion of this course the student will be able to:

- 1. Acquire knowledge on electrochemical, mechanical and physical properties of engineering materials to design engineering structures and devices.
- 2. Select appropriate materials for various engineering applications.
- 3. Identify characteristic properties of engineering materials made of alloys, metals, ceramics composites and polymers and how these can be changed.

Learning	Course content	Teaching-	Assessment
Outcomes		learning strategy	Strategy
CLO-1	1. Introduction to Engineering Materials:	Lecture	Full Marks: 50
	The selection strategy, motivation for	Exercise/Tutorial/	Attendance:10%
	selection, deriving property limits and	quiz	Tutorial/Quiz:20%
	material indices, material index examples,	Attendance	Exam: 70%
	materials selection case studies.		
CLO-2&3	2. Materials for Sports: The revolution in		
	sports products, the tradition of using wood,		
	tennis rackets, golf clubs, archery bows and		
	arrows, bicycle for sports, fencing foils,		
	materials for snow sports, safety helmets.		
CLO-2&3	3. Materials Ship for Structures: The ship		
	girder, factors influencing materials selection		
	for ship hulls, materials of construction.		
CLO-2 & 3	4. Materials for Air Frame: Principle		
	characteristics of air craft structures,		
	properties requirements of aircraft structures,		
	requirements for high-speed flight, candidate		
	materials for aircraft structures.		

CLO-2 & 3	5. Materials for Engine and Power Generation: Internal combustion engine, external combustion engine, materials for	
	bearing, materials for springs, materials for	
	extra high voltage transmission.	
CLO-2 & 3	6. Materials for Automobile Structures: The	
	use of steel, the introduction of plastics,	
	aluminium and its alloys, corrosion damage to	
	automobiles, surface treatment of steel for car	
	bodies, future trend in body construction and	
	materials, Exhaust systems.	

Author's Name

- 1. Michael F. Ashby
- 2. V. B. Bhandari
- 3. V. M. Faires
- 4. E. Alfredo Campo
- 5. F. A. A. Crane, J A Charles and J Furness
- 6. R. E Smallman, R. J Bishop
- 7. Flake Cambell Jr

Title

Materials Selection in Mechanical Design Design of Machine Elements Design of Machine Elements Selection of Polymeric Materials Selection and Use of Engineering Materials Modern Physical Metallurgy and Materials Engineering Manufacturing Technology for Aerospace Structural Materials

Course Title: Fibre Technology

Course Code: MSE4251 Course Credit: 2 Course Teacher(s): Announce to be later

Course Description:

The course begins with the fundamental concepts, structure and properties of fiber, and then gives a brief overview of existing natural, regenerated, and synthetic fibers with the main focus on common characteristics, applications and sustainability issues. The production methods for natural, regenerated and various synthetic fibers will be discussed in detail. The critical process parameters will be discussed that can affect the fiber properties and the environmental impact of the processing methods. The more common technical fibers, their characteristic properties and uses will also be discussed in detail.

Course Objective (Intended Learning Objectives, ILOs):

- **1.** The course will help the students to understand the fundamental concepts, structure, properties and applications of fibres.
- 2. Students will also learn the different production methods of natural, regenerated and synthetic fibers.
- **3.** The course will improve the student's capability of more common technical fibers with their properties and applications.

Course Learning Outcome (CLO):

After successfully completion the course the students should be able to:

- 1. Gain knowledge of fundamental concept of different types of fibers, their structure and properties.
- 2. (a) Describe and recognize plants and animals which are able to provide fibers.
- 2. (b) Understand the different types of regenerated fiber that origin is natural materials.
- **3.** Recognize different synthetic fibre, their fabrication, properties and end uses.

Learning Outcomes	Course content	Teaching- learning strategy	Assessment Strategy
CLO-1	1. Structure and Properties of Fibres: Fundamental concepts, classification, orientation and crystallinity of polymers, requirements of fibre-forming polymers, properties of fibres.	Lecture Exercise/Tutorial/ quiz Attendance	Full Marks: 50 Attendance:10% Tutorial/Quiz:20% Exam: 70%
CLO-2. (a)	2. Cellulosic and Protein Fibres: Cellulosic fibres: seed fibres- cotton, coir; bastfibres- jute, flax, hemp, ramine; leaf fibres- sisal, manilla, abaca; Other polysaccharide fibres- alginate fibres, chitin and chitosan fibres; protein fibres: wool fibres, silk fibres.		
CLO-2. (b)	3. Regenerated Fibres: Regenerated cellulose fibres, viscous, cuprammoniumrayons, regenerated protein fibres		
CLO-3	4. Synthetic Fibres: Processing of synthetic fibres, polyamide fibres, polyester fibres, acrylic and modacrylicfibres, polyolefin fibres, elastomeric fibres.		
CLO-3	5. High performance fibres: Introduction, aramid fibres, aromatic polyester fibres, polybenzimidazolefibres, fluoropolymer		

Course Title: Welding and Joining Laboratory

	fibres, carbon fibres, thermoset polymer fibres, ceramic fibers.
CLO-3	6. Other Speciality Fibres: Nanofibers, electrically conducting fibres, optical fibres, luminescent fibres, biodegradable fibres.

Suggested Reading Lists/Essential Readings

<u>Author's Name</u>

Title

- 1. R. W. Monchieff
- 2. Robert R mather and Roger H Wardman
- 3. J. Gordon Cook
- 4. V. R. Gowariker
- 5. E. P. G. gohl and L. D. Vilensky

Man–Made Fibres The Chemistry of Textile Fibres Handbook of Textile Fibres Polymer Science Textile Science

Course Code: MSE4212 **Course Credit: 2 Course Teacher(s):** Announce to be later

Course Description:

Course content	Teaching-learning	Assessment Strategy
	strategy	
1. Welding: Metal joints: riveting, grooving,	Lecture	Full Marks: 50
soldering, welding; Welding practice: electric	Exercise/Tutorial/	Attendance:10%
arc steel, aluminum, fabrication of electrode;	quiz	Quiz, viva-voce and
welding defects: visual, destructive and non-	Attendance	continuous
destructive tests of welding.		assesment:30%
2. Gas welding and equipment, types of flame,		Exam/Design
welding of different types of materials. Gas		work/Report: 60%
welding defects. Test of gas welding.		-
3. Hard Coating of Materials by Welding Process.		

Suggested Reading Lists/Essential Readings
Course Code: MSE4222

Course Title: Computer Aided Engineering Drawing and Designing Laboratory

Course Credit: 2 Course Teacher(s): Announce to be later

Course Description: This course offers computer-aided design (CAD) and drawing. Students will get hands-on experiences about CAD software to create precision design and drawing of two-dimensional (2D) and three-dimensional (3-D) models.

Course content	Teaching-learning	Assessment Strategy
	strategy	
4. Computer Aided Drawing (CAD): Use of interactive	Lecture	Full Marks: 50
menu driven software for preparation of line	Exercise/Tutorial/	Attendance:10%
drawing, graphic co-ordinate system; Commands for	quiz	Quiz, viva-voce and
draw, erase, move, rotate, mirror, hatch, etc.; Blocks	Attendance	continuous
and layer, dimension drawing size, saving, editing		assesment:30%
and plotting		Exam/Design
5. Drawing three dimensional objects.		work/Report: 60%
6. Drawing three dimensional objects.		_

Suggested Reading Lists/Essential Readings

Author's Name	Title
1. Z. A. Siddiqui:	Basics of Engineering Drawing

Course Code: MSE 4222 Course Title: Industrial Training/ Project/Study tour / Field work Course Credit: 2 Course Teacher(s): Announce to be later

Course Description: This project is introduced to make the students familiarize with the actual industrial environments and what they may need to do in an industry and also to make them realize how a material being produce in an industry.

Teaching-learning strategy	Assessment Strategy	
Lecture/Industrial tour/training/attachment/	Full marks 50	
Exercise/Tutorial/	Internal examiner/supervisor 30%	
quiz	External examiner (any teacher from the	
Attendance	panel of examiners) 30%	
	Presentation and oral examination 40%	

Course Code: MSE4232	Course Title: Research Project (Laboratory)
Course Credit: 2	
Full marks:50	
Internal examiner/supervisor	30%
External examiner (any teacher from the panel of examiners)	30%
Presentation and oral examination	40%