Educational Outcomes of History Discipline: Cognitive Domain's Strengths and Limitations

Jannati Kaonine Keya

Assistant Professor, History and Civilization Discipline, Khulna University, Khulna-9208, Bangladesh.

ARTICLE INFORMATION

The Faculty Journal of Arts Rajshahi University Special Volume-6 ISSN: 1813-0402 (Print)

Received: 09 March 2025 Received in revised: 28 April 2025 Accepted: 16 March 2025 Published: 25 October 2025

Keywords:

Bloom's taxonomy, Cognitive domain, Cognitive levels, Educational Outcomes, knowledge category.

ABSTRACT

By the mid-nineteenth century, history transitioned from a literary genre to an academic discipline. Since then, history, like other disciplines, has followed the same approach in achieving its educational goals. Here, the main objective of this study is to determine how the study in history is outcome-oriented in the light of Bloom's taxonomy's cognitive domain. To reach the goal, a historical perspective approach has been used. In the 1950s, Benjamin S. Bloom's Taxonomy of Learning changed educational objectives and learning processes globally. This taxonomy identifies three domains of learning: cognitive, affective, and psychomotor. However, not all domains are equally effective for all disciplines. Therefore, this study seeks to answer the question of how effective the cognitive domain is for history. It was found that Bloom's cognitive domain has two dimensions later revised: cognitive levels and knowledge categories. Among the six cognitive levels (Remember, Understand, Apply, Analyze, Evaluate, and Create), remembering, understanding, and analyzing are primarily used in history. Sometimes, evaluation is also done in historical studies. However, there is minimal opportunity to apply or create in a historical field of study compared to tangible outcomes. Again, in the case of the knowledge category, factual and conceptual categories can be utilized in a wide range, but the use of metacognition categories can be limited. However, the use of the procedural category is considered to be impossible. However, by overcoming the limitations, if the cognitive domain can be used on a larger scale and effectively in historical study and research, then it is expected that students' interest in studying history discipline will increase.

Introduction

By the mid-nineteenth century, history transitioned from a literary genre to an academic discipline. Since then, history, like other disciplines, has followed the same approach in achieving its educational goals. In the 1950s, Benjamin S. Bloom's Taxonomy of Learning changed educational objectives and learning processes and became a widely recognized educational framework. This framework identifies three domains of learning: cognitive, affective, and psychomotor. Over time, the teaching and learning style of history, like other disciplines, has changed. Now, society expects results from students. Moreover, that is why people, especially educators, have increased their interest in outcome-based education since the 1990s. Therefore, in the era of market-based education, people expect students studying history to take outcome-based education. For this, educators are interested in developing and following the method of studying history. For these reasons, they are following the process of teaching and learning history in line with outcome-based education and Bloom's taxonomy. Therefore, exploring the relationship and effectiveness of history with cognitive domains is very important. The main goal of this study is to ascertain the outcome-oriented nature of Bloom's cognitive domain taxonomy's historical research. Specifically, it has two distinct objectives: (i) to test the cognitive domain's practice in history and (ii) to explore its strengths and weaknesses based on knowledge categories within the history discipline. This study combines history and education into a multidisciplinary approach, using a historical perspective to reach the goal. Historical perspective is the study of a subject in light of its earliest phases and subsequent evolution. "Historical perspective differs from history because it aims to sharpen one's vision of the present, not the past." At the same time, the content analysis method has been employed to comprehend and connect the cognitive domains' strengths and weaknesses in their application to teaching and learning history as a discipline. In this case, among the various content analysis methods, the relational analysis approach transcends concept identification and explores their interconnections. It can reveal how different ideas, beliefs, or perspectives are connected and interact within the educational context. Evaluating Educational Programs and Policy techniques have been used to determine the effectiveness of the cognitive domain in history and to evaluate the effectiveness of academic programs and policies by examining relevant documents, such as program reports, policy briefs, and evaluation reports. This study is divided into three sections. The first defines educational outcomes and cognitive domains. The second examines the application of the cognitive domain in history. The third analyzes the cognitive domain's strengths and weaknesses based on knowledge categories within the history discipline.

Key Terms Definitions

Educational Outcomes: Before defining educational outcomes, we must clarify the outcome. Outcomes are explicit learning outputs that educators want students to exhibit following substantial learning experiences. To describe the issue, William G. Spady elucidates those outcomes pertain to learners' capabilities in applying their knowledge and acquired skills. They represent the concrete implementation of acquired knowledge. This indicates that outcomes are actions and performances demonstrating and representing the learner's proficiency in utilizing content, information, concepts, and instruments. Engaging learners in meaningful applications of their knowledge represents a substantial advancement beyond mere comprehension.²

Here, he mentions some points that required the outcome. Firstly, he indicates Tangible applications of learning. It denotes the real-world execution of knowledge and skills obtained through formal or informal education. This connects theoretical notions and practical applications, illustrating the significance and utility of learning. Secondly, he points out that successfully doing something by the learners after the learning process. Here, success is a complex notion characterized as a journey rather than a final goal. It pertains to establishing objectives, surmounting obstacles, and attaining fulfillment. Several elements are essential for achieving success. Explicit Objectives mean SMART objectives, which provide guidance and impetus to achieve specific outcomes. Steadfast Endeavor: Achievement seldom occurs instantaneously. It necessitates unwavering commitment, continual diligence, and a readiness to exert the requisite effort. Resilience: Adversities and failures are unavoidable. Resilience is the capacity to recover from obstacles, derive lessons from errors, and persist in progress. A growth mindset entails the conviction in one's capacity for learning and development, accepting problems as opportunities, and perseverance in overcoming obstacles, all essential for sustained success. Perseverance: Maintaining dedication to your objectives while encountering challenges is crucial. It involves persevering through discomfort while sustaining an optimistic disposition. Some specialists argue that 'Educational Outcomes' are an educational process's observable results or achievements. These outcomes include the information, data, facts, skills, attitudes, ethics, ideals, and morals students acquire through academic knowledge and understanding. They are often assessed to measure the educational system's effectiveness and guide future improvements.³ Ultimately, educational outcomes pertain to the quantifiable enhancement of students' knowledge, skills, attitudes, and behaviors from their academic endeavors. They delineate the anticipated results or achievements of the educational process.

Cognitive Domain: The taxonomy of educational objectives denotes the classification of the educational system's goals. The taxonomy has three major parts: the cognitive, affective, and psychomotor domains.⁴ The cognitive domain comprises objectives for remembering or identifying knowledge and developing academic capabilities and expertise. This domain is crucial to contemporary test development efforts. This area encompasses most curriculum development efforts and has the most explicit definitions of objectives articulated as descriptions of student behavior.⁵ Bloom and his team have organized the cognitive domain into six major classes: Knowledge, Comprehension, Application, Analysis, Synthesis, and Evaluation.

Although it is possible to conceive of these significant classes in several different arrangements, the present one represents the hierarchical order of the various course objectives. However, later, due to the development of cognitive psychology, Lorin W. Anderson et al. revised Bloom's taxonomy. Therefore, they represented it in a two-dimensional table called the Taxonomy Table. The table features clearly defined categories of knowledge dimension and cognitive processes dimension.

The Application of the Cognitive Domain in History

Like other branches of knowledge, there are various views on using cognitive domains in history. Although there is some research on how and in what ways the effective use of cognitive domains in the practice of history can be ensured, there is scope for extensive research on this. Therefore, it is analyzed in detail below according to the Revised Bloom's Taxonomy.

Practice of Remember: The six categories of the cognitive process dimension have been applied over time in history in more or less extensive ways. The first one in the hierarchy is remember. According to Lorin W. Anderson et al., this can be split into recognizing and recalling. Events related to the Battle of Plassey can be mentioned in the context of the history of the Indian subcontinent. Regarding cognitive domain processes, the ability to recognize and recall is called remembering. This is how the general public and academics, including students and educators, can play a crucial role in judging the discipline of history. Recognizing means retrieving or identifying relevant knowledge from long-term memory to compare it with the presented information. On the other hand, recalling entails retrieving pertinent information from long-term memory upon request. The prompt frequently takes the form of a question. During recall, anybody retrieves information from long-term memory and transfers it to working memory for processing. Recognizing and recalling are directly linked to factual knowledge. Facts about a historical event need to be remembered and recognized. For good reason, anyone who studies history uses the remembering part of the cognitive domain.

Exercise of Understanding (Understand): Understanding is the second dimension in the hierarchy of cognitive processes. It constructs meaning from instructional messages, including oral, written, and graphic communication. Seven concepts and expressions can conceptualize understanding. Firstly, it denotes interpreting. Interpreting transpires when pupils can transform information from one representational format to another. Interpreting may involve converting words to words (e.g., paraphrasing), pictures to words, words to pictures, numbers to words, words to numbers, musical notes to tones, etc. Secondly, exemplification transpires when a pupil provides a specific example of a general perception or attitude. This process entails recognizing the defining characteristics of the general idea (e.g., an isosceles triangle must possess two equal sides) and employing these characteristics to identify or create a specific instance (e.g., determining which of three presented triangles is an isosceles triangle). Synonymous terms include illustrating and instantiating.¹⁰ Thirdly, classification arises when a learner identifies an item as part of a particular category. Classifying entails identifying pertinent aspects or patterns corresponding to the specific occurrence and the underlying notion or principle. Classification is a corresponding technique to exemplification. Illustrating commences with a general idea or principle, necessitating the student to identify a specific instance or example. In contrast, categorizing initiates with a particular instance or example, requiring the student to discern a general concept or principle. 11 Fourthly, classification entails summarization when a student proposes a singular remark that encapsulates the supplied material or distills an essential subject. Summarizing entails creating an illustration of evidence or indication, such as the significance of a section in a performance, and extracting a summary from it, including identifying a theme or key points. The alternative terms for classifying are categorizing and subsuming. The fifth definition of understanding is "inferring." Critics possess a comprehensive understanding of the causal interpretations and frequently the logical, empirical, and theoretical justifications for them. They can directly contest any element of the analysis, including the selection and textual portrayal of acts to be examined and their inferred relevance and causal relationships. 12 It entails identifying a pattern among a collection of instances or cases. This occurs when a pupil can derive a notion or principle that elucidates examples. This procedure depends on preserving the pertinent attributes of each case and, crucially, on comprehending the interrelations among them. Inferring differs from attributing, which is a cognitive activity related to analysis. Another method of distinguishing between these two is that attribution is generally relevant to contexts where one must "read between the lines," particularly when attempting to ascertain an author's perspective. Conversely, inferring transpires inside a context that anticipates the inference. Alternative terms for *inferring* are extrapolating, interpolating, predicting, and concluding. The sixth definition of understanding is comparison, which entails identifying similarities and contrasts among two or more objects, events, ideas, issues, or situations. It can enhance reasoning by analogy. Contrasting, matching, and mapping are alternative terms. 13 The final aspect of knowledge under the cognitive process dimension pertains to explanation or explaining. It transpires when a pupil formulates and applies a cause-and-effect model of a system. This may originate from an established theory, as frequently observed in the natural sciences as commonly seen in the arts and humanities. A comprehensive explanation necessitates the development of a cause-and-effect model that incorporates every important component of a system pivotal incident in the sequence, utilizing the model to ascertain how a modification in one element of the system or one "link" in the sequence influences a change in another aspect. 14 The understanding domain is directly linked to the conceptual domain. Historians use almost all the seven concepts of understanding. Historians employ many classifications and categories to make sense of the massive amounts of data they research. Complex events, communities, and historical changes can be better understood with the aid of these systems. Some of the most prevalent historical categories and classifications are included below. The predominant classifications and categories utilized in history include chronological classification, geographic classification, continents, thematic categorization, historical figures, and the historiographical approach. For example, they use ancient, medieval, modern, and contemporary periods. They also use the Renaissance, Industrial Revolution, Cold Era, Hybrid War Era, etc.

Usage of Applying (Apply): Application is the third level in the hierarchy of cognitive processes. It involves using specific methodologies to perform tasks or solve problems, and as a result, it is closely linked to procedural knowledge. The "Apply" category includes two cognitive processes: executing familiar tasks and implementing solutions for unfamiliar problems. An alternative term for implementing is using. However, in a general sense, application means practical work that is not entirely related to history. However, it can be applied to any discipline. In this case, the point of consideration is to explore the relationship of this application to what history students or historians produce. A common question is what historians do, and the question of applying is directly related to this. The answer from the U.S. Bureau of Labor Statistics is instructive. According to it,

Historians typically Gather historical data from various sources, including archives, books, and artifacts; Analyze and interpret historical information to determine its authenticity and significance; Trace historical developments in a particular field; Engage with the public through educational programs and presentations; Archive or preserve materials and artifacts in museums, visitor centers, and historic sites; Provide advice or guidance on historical topics and preservation issues; Write reports, articles, and books on findings and theories.¹⁵

So, the capacity to examine, interpret, and assess historical data and arguments is known as applying domain in historical research. This requires knowledge and comprehension of a particular historical time, area, or issue. It calls for analytical and creative thinking about historical events, not merely memorization of facts.

Use of Analysis (Analyze): Analyze is the fourth level of the hierarchy of cognitive processes. Analysis entails deconstructing material into its fundamental components and assessing the relationships between them and the complete frame. This type encompasses the mental procedures of differentiation, organization, and attribution. Differentiating entails discerning the elements of a full structure based on their significance or relevance. Differentiating transpires when a learner discerns pertinent information from irrelevant or significant information and

thereafter focuses on the relevant or essential information. Organizing is detecting the components of a condition and understanding their interrelations within a cohesive framework. A student establishes systematic and consistent links among presented material throughout the organization process. Organizing typically transpires together with differentiating. The learner initially finds the pertinent elements and subsequently ascertains the overarching structure that accommodates these aspects. Attributing transpires when a student discerns the perspective, prejudices, values, or goals inherent in communications. Attribution entails a deconstructive process whereby a pupil discerns the author's intentions about the supplied material. Unlike interpreting, where the student aims to comprehend the meaning of the provided content, assigning entails a progression beyond fundamental comprehension to deduce the intention essential to the material. 16 Historical analysis is a way of examining evidence to comprehend the past. It is primarily applied to documentary evidence, though it may also be used for artifacts. 17 The most critical parts of historical research are source analysis, evidence evaluation, identifying patterns and trends of historical data, interpreting citations, and formulating arguments. Although the students may have access to a wealth of historical data, experts argue they lack the critical thinking skills to apply that data and draw meaningful conclusions effectively. 18 In academia, there is a term for making sense, where sense is defined as an entity formed through the interplay of reading, writing, and thinking. Investigation is the term. Your unique contribution is what you offer as a reader or writer in the form of analysis. If you cannot make sense of history, that is, if anybody cannot analyze it, they cannot study history.¹⁹

Practice of Evaluation (Evaluate): Evaluate is the fifth level of the hierarchy of cognitive processes. Evaluation is the process of forming conclusions based on established criteria and standards. The most frequently employed criteria are quality, effectiveness, efficiency, and consistency. They may be established by the student or by external parties. The category assessment encompasses cognitive processes, including checking judgments about internal consistency and critiquing judgments based on external criteria. Checking is examining internal discrepancies or errors in a process or a product. For instance, checking transpires when a student evaluates if a conclusion logically derives from its premises, whether data corroborates or refutes a hypothesis, or whether the provided material contains contradictory elements. Side by side, critiquing entails evaluating a product or activity according to externally established criteria and norms. A student evaluates a product by identifying its good and negative attributes and formulates a judgment based, at least in part, on those attributes. Critique is fundamental to critical thinking. An alternative term for critiquing is judging. Regarding this, historians argue that,

"History is about argument, interpretation, and consequence. To complete quality historical analysis—to "do history right"—one must use appropriate evidence, assess it properly (which involves comprehending how it relates to the situation), and then draw appropriate and meaningful conclusions based on said evidence."²¹

Usage of Creating (Create): Create is the sixth level of the hierarchy of cognitive processes. Creating entails assembling components to create a logical or valuable whole. The "Create" objectives ask students to mentally rearrange some components or elements into a previously unidentified pattern or structure to produce a new product. Generally speaking, the procedures in Create are synchronized with the student's prior educational experiences. The creation of unique products, frequently due to an exceptional talent, is what some people define as creativity. Teachers must determine what is original or unique, even though many of the Create category's objectives emphasize it. Is it possible for a single student's work to be referred to as unique? We acknowledge that composition frequently, though not always, necessitates the Create-related cognitive processes. For instance, create does not engage in writing that interprets materials or depicts the members of ideas. We also acknowledge that the mental processes linked to Create may be necessary for profound comprehension beyond simple comprehension. Deep understanding involves the cognitive processes of creativity to the extent that it is an act of creation. Three stages can be distinguished in the artistic procedure:

"Problem representation, where students try to comprehend the task and come up with potential solutions; solution planning, where they consider the options and create a feasible plan; and solution execution, where they successfully carry out the plan."²³

As a result, the creative process begins with a divergent phase where students try to understand the challenge by considering various potential solutions. Thus, the three cognitive processes of generating, planning, and creating are linked to the concept of creation. Like any other discipline, developing, planning, and making history refers to students' active engagement in constructing their understanding of the past. It goes beyond passive learning and encourages learners to contribute actively to the historical inquiry procedure. By following systematic ways, a historian produces writing that considers the creation of history.

Representing the issue and developing solutions or theories that satisfy predetermined standards are both parts of the generating process. Frequently, the initial representation of an issue indicates potential resolutions; nevertheless, redefining or developing a new illustration of the problem may expose alternative answers. In this context, "generating" is used in a limited sense. The educator's use of creative procedures, such as translating, illustrating, summarizing, inferring, categorizing, comparing, and explaining, enhanced understanding. Convergence, or reaching a single meaning, is the most common understanding objective. In contrast, the goal of creating is divergent, meaning many outcomes are attained. Speculating is a synonym for making something new.²⁴ Planning entails devising a solution approach that meets a problem's requirements or developing a strategy for resolving the issue. Another word is designing. Producing entails implementing a plan to address a specific issue while adhering to predetermined guidelines. As we previously mentioned, originality or uniqueness may or may not be a requirement for the objectives in the category Create. So, it is with achieving goals. An alternative term is constructing.

Strengths and Weaknesses of History, based on Categories of the Knowledge Dimension

In the cognitive domain, knowledge dimensions and categories are considered very important. Which knowledge dimension fits a given discipline depends mainly on the subject matter and content; therefore, the same knowledge dimension is not equally applicable to all disciplines. Education specialists opine that knowledge is contextualized and domain-specific, based on cognitive science studies on the formation of expertise, expert reasoning, and problem-solving. Therefore, knowledge comes in various forms, and there are reportedly even more names to describe it. Scholars worldwide use knowledge differently and have named it differently based on their purpose. This may be categorized as: Other terms for the various types of expertise include cognitive, prior, procedural, semantic, situational, sociocultural, tacit, declarative, conceptual, conditional, content, declarative, disciplinary, discourse, domain-related, episodic, explicit, and factual knowledge, etc.²⁵

But this is very discipline-specific knowledge, not general. Education specialists tried to generalize a few knowledge categories that fit generally to all disciplines to some extent. In this study, the researcher has attempted to explore the strengths and weaknesses of history based on the four categories of knowledge: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge.²⁶

Factual knowledge includes professionals' fundamental components to explain, comprehend, and arrange their academic field. Usually, factual knowledge is found at a low degree of abstraction. Knowledge of precise details, elements, and terminology are the two subtypes of factual knowledge. Understanding terminology involves familiarizing particular labels and symbols, both spoken and non-spoken (e.g., words, digits, signs, pictures). Certain elements and details include dates, persons, places, events, information sources, etc. It could contain extremely particular and exact information, such as the precise date of an event or the accurate size of a phenomenon. The general order of magnitude of phenomena or the period in which an event happened are examples of approximate information that may be included. Unlike facts that can only be known in a broader context, specific facts can be isolated as separate parts. This is the strength of history in that it uses factual knowledge extensively. Individuals typically have analogous experiences in history courses. They acquire the facts and dates considered pertinent

by the instructor and the textbook. They think that history is about facts and dates.²⁷ They believe in history in every aspect using the dates-facts method. History's strength is that people do not twist it, which is the most dangerous trend in historical academic discourse. Moreover, like in almost all other disciplines, there are books on terminology for studying history in practically every region of the world, through which one can quickly learn vocabulary related to history.

Conceptual knowledge: Understanding categories, densifications, and the connections between a few more intricately structured knowledge forms are all included in conceptual knowledge. Knowledge of classifications and categories, principles and generalizations, theories, models, and structures are the three subtypes of conceptual knowledge. While knowledge of particular details comes more directly from observation, experimentation, and discovery, classifications and categories are primarily the product of consensus and convenience. Understanding classifications and categories often reflects how subject-matter specialists approach problems and think about them while understanding which particular details become crucial comes from the outcomes of these processes. Knowledge of Principles and generalizations is meant to describe and arrange phenomena, and students might not be thoroughly familiar with them, making them difficult to understand. Understanding theories, models, and structures entails understanding generalizations and their interactions. This provides a comprehensive, well-rounded, systematic perspective on a complicated issue, phenomenon, or topic.

Procedural knowledge: The "knowledge of how" to do a task is procedural knowledge. It frequently takes the shape of a list or order of actions. It encompasses understanding methods, techniques, algorithms, and skills—collectively called procedures. Competence in specific processes is procedural knowledge, whereas factual information and conceptual knowledge concern what can be considered products. Procedural knowledge is divided into three subcategories: subject-specific algorithm and skill knowledge, subject-specific technique and method knowledge, and process criterion knowledge. In general, procedural knowledge is directly linked to technical production. However, in the theoretical arena, it can be connected to any production, whatever its nature. In this regard, academicians argue that historians compile a corpus of facts to derive broader insights and conclusions. To address the how and why inquiries of historical analysis and research, they must collect all available evidence, assess it for bias and authenticity, comprehend the context these facts reveal, and formulate logical conclusions based on their findings.²⁹

Metacognitive knowledge: Metacognitive knowledge refers to understanding the nature of cognition and one's cognitive processes. Experts agree that pupils will develop greater self-awareness and mental capacity as they progress through their academic careers. Regardless of their theoretical position, individuals will likely learn more successfully as they act on this insight.³⁰ Metacognitive knowledge, self-awareness, self-regulation, self-reflection, and self-regulation are some words used to represent this overarching developmental trend, although they vary between theories. Metacognitive knowledge includes knowledge about cognitive processes, information regarding cognitive tasks, and strategies.

Understanding the general methods for learning, reasoning, and solving problems is known as strategic knowledge. This kind includes understanding the range of techniques students may employ to retain information, deduce meaning from text, or understand what they read in books and other course materials or hear in class, moreover, what students read in books and other course resources in and outside classrooms. Rehearsal, elaboration, and organization are the broad categories into which the vast array of distinct learning processes can be divided.³¹ It contains broad techniques for thinking and solving problems in the second stage of metacognitive knowledge, where cognitive tasks are essential. Liesbeth Kester and Paul A. Kirschner argue that cognitive tasks involve the mental processing of new information, including acquiring and organizing knowledge and the ability to retain and regain that evidence from memory for use in comparable situations later on. To round it all out, they incorporate an understanding of the when, why, and how of various tactics and general and local social, conventional, and cultural standards. Thirdly, knowing one's cognitive capabilities and limitations is essential to self-knowledge.³² Self-knowledge is described as authentic and accurate information one holds about

oneself. It encompasses details regarding personality traits, standard emotional states, needs and objectives, values, opinions, beliefs, preferences, physical characteristics, relationships, behavioral patterns, and social identity. Consequently, self-knowledge does not constitute an intrinsic self-process; instead, it emerges from several self-reflective and social processes, some previously analyzed.³³ Metacognitive knowledge in history denotes a student's consciousness and thoughtful consideration of their thinking discourse when learning and retrieving historical evidence. It includes spotting how they study best, recognizing and categorizing their strengths and weaknesses in historical thinking, and adapting their learning approaches accordingly.

History education in the cognitive domain promotes students' analysis of historical sources, interpretation of data, and formulation of reasoned arguments, referred to as critical thinking abilities. These talents apply to various fields and real-world scenarios. However, there are several weaknesses in the cognitive domain related to history education, including Overemphasis on Factual Knowledge. In most cases, a sole focus on the cognitive domain can lead to rote memorization of facts, neglecting history's emotional and social dimensions. Then, it has limited engagement with affective and psychomotor Domains. While cognitive skills are crucial, they do not fully address the affective (emotional) and psychomotor (physical) aspects of learning, which are equally vital in history education. Again, it has a Potential for Bias. Personal biases and perspectives can influence historical interpretations. The cognitive domain may not adequately address the potential for bias in historical narratives—lastly, history education clings to Neglect of Personal Relevance. A purely cognitive approach may not effectively connect historical learning to students' personal lives and experiences, making it less engaging and meaningful.

Conclusion

To continue the necessity of history as a discipline, it is essential to cope with the changing teaching and learning process of education applicable to all disciplines. However, it is sometimes inapplicable to the discipline of history. For this reason, this study has explored the relevance of the cognitive domain. Not all the domains are equally used in history, but they have strong relevance. At the same time, not all knowledge categories have the same usage. Among them, factual knowledge is mainly used in historical research and study. Conceptual domains also have extensive usage. However, the procedural category is used in limited ways. It has limited use in the history arena. This study has not explored the history of affective and psychomotor domain usage. So, more research initiatives can be expected to examine the practical usage of the affective and psychomotor domains in history.

References

¹ Barbara S. Lawrence, "Historical Perspective: Using the Past to Study the Present," *Academy of Management Review*, Vol. 9. No. 2, (1994): 307-312.

William G. Spady, Outcome-Based Education: Critical Issues and Answers (American Association of School Administrators), 13.

J. Naskath, R. Rajakumari, M. Syed Rabiya, A. Shali, and Nithyanantham Sampathkumar, "Outcome-Based Education Through E-Learning Pedagogy: A Case Study," in *Handbook of Research on Innovative Frameworks and Inclusive Models for Online Learning*, ed. Jared Keengwe (New York: IGI Global, 2023), 327.

Max D. Engelhart et al., Taxonomy of Educational Objectives: The Classification of Educational Goals, Handbook 1 Cognitive Domain, ed. Benjamin S. Bloom (London: Longmans, Green and Co Ltd, 1956), 7.

Max D. Engelhart et al., *Taxonomy of Educational Objectives*, 7.

⁶ Max D. Engelhart et al., *Taxonomy of Educational Objectives*, 18.

⁷ Lorin W. Anderson et al., ed. A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives, 1st edition (London: Pearson, 2000), 27.

⁸ Lorin W. Anderson et al., ed. A Taxonomy for Learning, Teaching, and Assessing, 67-69.

Tom Kasanda, Improving the Future of Learning Through Enhanced Collaboration Methods and Platforms, Master of Design in Strategic Foresight and Innovation (Toronto: OCAD University, 2017), 118.

Lorin W. Anderson et al., ed. A Taxonomy for Learning, Teaching, and Assessing, 71-72.

11 Ibid.

- Larry J. Griffin and Robert R. Korstad, "Historical Inference and Event-Structure Analysis," *International Review of Social History* 43, Supplement (1998),147.
- Lorin W. Anderson et al., ed. A Taxonomy for Learning, Teaching, and Assessing, 75.

14 Ibid.

- U.S. Bureau of Labor Statistics, Occupational Outlook Handbook, What Historians do, https://www.bls.gov/ooh/life-physical-and-social-science/historians.htm#tab-2, accessed on 15 Jan. 2025.
- ⁶ Lorin W. Anderson et al., ed. A Taxonomy for Learning, Teaching, and Assessing, 79-82.
- David Bricknell, "Historical Analysis," in *The Sage Dictionary of Qualitative Management Research*, Richard Thorpe and Robin Holt, eds. First published (London: Sage Publications Ltd., 2008), 108-109.
- National Research Council 2000, How People Learn: Brain, Mind, Experience, and School, Expanded Edition (Washington, DC: The National Academies Press, 2000), 158.
- Jim Cullen, Essaying the Past: How to Read, Write, and Think about History, Third Edition (Oxford: John Wiley & Sons, Inc, 2017), 61.
- Lorin W. Anderson et al., ed. A Taxonomy for Learning, Teaching, and Assessing, 82-84.
- Stephanie Cole, Kimberly Breuer, Scott W. Palmer; and Brandon Blakeslee, How History is Made: A Student's Guide to Reading, Writing, and Thinking in the Discipline (Arlington: Mavs Open Press, 2022), 12.
- Lorin W. Anderson et al., ed. A Taxonomy for Learning, Teaching, and Assessing, 85.
- Woro. Kusmaryani, "Project Based Learning (PBL) in English Drama Course: The Process and Its Impact on Students' Speaking Skill," *Linguistics and English Language Teaching Journal*, Vol. 10, No 2, December (2022): 7, https://doi.org/10.31764/leltj.v10i2.11842.
- Lorin W. Anderson et al., ed. *A Taxonomy for Learning, Teaching, and Assessing*, 86.

 ²⁵ C. Bereiter & M. Scardamalia, "Beyond Bloom's Taxonomy: Rethinking knowledge for the knowledge age," In A. Hargreaves, A. Lieberman, M. Fullan & D. Hopkins Eds., *International handbook of educational change* (London: Kluwer Academic Publishers, 1998), 675-82.
- J. D. Branslord, A. L. Brown, & R. R. Cocking eds, How people learn: Brain, mind, experience and school. (Washington, DC: National Academy Press, 1999), 3-30.
- National Research Council 2000, *How People Learn: Brain, Mind, Experience, and School*, Expanded Edition (Washington, DC: The National Academies Press, 2000), 157.
- P. Alexander, D. Schallert, & V. Hare, "Coming to terms: How researchers in learning and literacy talk about knowledge," *Review of Educational Research*, 61 (1991): 315-343.
- Stephanie Cole, Kimberly Breuer, Scott W. Palmer; and Brandon Blakeslee, How History is Made: A Student's Guide to Reading, Writing, and Thinking in the Discipline (Arlington: Mavs Open Press, 2022), 25.
- J. D. Branslord, A. L. Brown, & R. R. Cocking eds, *How people learn*, 26.
- 31 C.E. Weinstein & R. Mayer, "The teaching of learning strategies," in M.C. Wittrock ed., Handbook of research on teaching (New York: Macmillan, 1986), 321.
- J. Flavell, "Metacognition and cognitive monitoring: A new area of cognitive developmental inquiry," *American Psychologist*, 34 (1979): 906-911.
- Alain Morin and Famira Racy, "Dynamic self-processes," in J. Rauthmann ed., The Handbook of Personality Dynamics and Processes (London: Academic Press, 2021), 373.